Approximation of integrable functions by general linear matrix operators of their Fourier series

Type: Article

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.1515/dema-2022-0009

Abstract

Abstract The pointwise estimates of the deviation <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>T</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> </m:mrow> </m:msub> <m:mi>f</m:mi> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mrow> <m:mo>⋅</m:mo> </m:mrow> <m:mo stretchy="false">)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mo>⋅</m:mo> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {T}_{n,A}f(\cdot )-f\left(\cdot ) in terms of pointwise moduli of continuity based on the points of differentiability of indefinite integral of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>f</m:mi> </m:math> f , with application of the r th differences of the entries of <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>A</m:mi> </m:math> A , are proved. The similar results in case of the Lebesgue points are considered, too. Analogical results on norm approximation with remarks and corollaries are also given.

Locations

  • Demonstratio Mathematica - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ Approximation of integrable functions by general linear operators of their Fourier series at the Lebesgue points 2011 Włodzimierz Łenski
Bogdan Szal
+ PDF Chat Degrees of the approximation of integrable functions by some special matrix means of fourier series 2019 Radosława Kranz
Aleksandra Rzepka
Ewa Sylwestrzak-Maślanka
+ Approximation of integrable functions by general linear operators of their fourier series 2011 Włodzimierz Łenski
Bogdan Szal
+ Approximation of Integrable Functions by General Linear Operators of Their Fourier Series 2012 Wiodzimierz
Lenski
Bogdan
Szal
+ PDF Chat On the approximation of integrable functions by some special matrix means of Fourier series 2017 Radosława Kranz
Aleksandra Rzepka
+ Approximation of conjugate functions by general linear operators of their Fourier series at the Lebesgue points 2014 Włodzimierz Łenski
Bogdan Szal
+ Approximation of conjugate functions by general linear operators of their Fourier series at the Lebesgue points 2014 Włodzimierz Łenski
Bogdan Szal
+ Pointwise approximation of functions by matrix operators of their Fourier series with $r$- differences of the entries 2019 Włodzimierz Łenski
Bogdan Szal
+ Pointwise approximation of functions by matrix operators of their Fourier series with $r$- differences of the entries 2019 Włodzimierz Łenski
Bogdan Szal
+ On the Approximation of Functions From Lp by Some Special Matrix Means of Fourier Series 2015 Radosława Kranz
Aleksandra Rzepka
+ On approximation of functions by some hump matrix means of Fourier series 2016 Włodzimierz Łenski
Bogdan Szal
+ APPROXIMATION NUMBERS OF SEQUENCE OF LINEAR INTEGRAL OPERATORS 2017 Traore Lassane
+ PDF Chat Pointwise approximation of functions by matrix operators of their Fourier series with r-differences of the entries 2020 Włodzimierz Łenski
Bogdan Szal
+ PDF Chat Approximation Properties of<math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"><mi>λ</mi></math>-Gamma Operators Based on<math xmlns="http://www.w3.org/1998/Math/MathML" id="M2"><mi>q</mi></math>-Integers 2020 Wen-Tao Cheng
Tang Xiao-jun
+ On the approximation of functions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e25" altimg="si10.svg"><mml:mrow><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>I</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:math> by a class of positive linear operators 2022 Jim Xiang
+ Approximation by Durrmeyer Type Operators Preserving Linear Functions 2015 Vijay Gupta
+ Approximation Operators 2012 Johan de Villiers
+ PDF Chat Approximation Properties of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mfenced open="(" close=")"> <mrow> <mi>p</mi> <mo>,</mo> <mi>q</mi> </mrow> </mfenced> </math>-Szász-Mirakjan-Durrmeyer Operators 2021 Zhipeng Lin
Wen-Tao Cheng
Xiao-Wei Xu
+ Convergence and rate of approximation for linear integral operators in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="italic">BV</mml:mi><mml:mi>φ</mml:mi></mml:msup></mml:math>-spaces in multidimensional setting 2008 Laura Angelonı
Gianluca Vıntı
+ Problems of approximation theory in abstract linear spaces 2021 A. S. Serdyuk
Andrii Shidlich