Do Not Take It for Granted: Comparing Open-Source Libraries for Software Development Effort Estimation

Type: Preprint

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2207.01705

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Perspective of Software Engineering Researchers on Machine Learning Practices Regarding Research, Review, and Education 2024 Anamaria Mojica-Hanke
David N. Palacio
Denys Poshyvanyk
Mario Linares‐Vásquez
Steffen Herbold
+ PDF Chat Towards a Classification of Open-Source ML Models and Datasets for Software Engineering 2024 Alexandra González-Eras
Xavier Franch
David Lo
Silverio Martínez‐Fernández
+ Machine Learning for Software Engineering: A Tertiary Study 2022 Zoe Kotti
Rafaila Galanopoulou
Diomidis Spinellis
+ Machine Learning and value generation in Software Development: a survey 2020 Barakat J. Akinsanya
Luiz Jonatã Pires de Araújo
Mariia Charikova
Susanna Gimaeva
Alexandr Grichshenko
Adil Khan
Manuel Mazzara
Ozioma Okonicha N
Daniil Shilintsev
+ PDF Chat Machine Learning for Software Engineering: A Tertiary Study 2022 Zoe Kotti
Rafaila Galanopoulou
Diomidis Spinellis
+ PDF Chat Software effort estimation accuracy prediction of machine learning techniques: A systematic performance evaluation 2021 Yasir Mahmood
Nazri Kama
Azri Azmi
Ahmad Salman Khan
Mazlan Ali
+ Machine Learning for Software Engineering: A Systematic Mapping. 2020 Saad Shafiq
Atif Mashkoor
Christoph Mayr‐Dorn
Alexander Egyed
+ PDF Chat A Literature Review of Using Machine Learning in Software Development Life Cycle Stages 2021 Saad Shafiq
Atif Mashkoor
Christoph Mayr‐Dorn
Alexander Egyed
+ Software Effort Estimation Accuracy Prediction of Machine Learning Techniques: A Systematic Performance Evaluation 2021 Yasir Mahmood
Nazri Kama
Azri Azmi
Ahmad Salman Khan
Mazlan Ali
+ An Empirical Study of Self-Admitted Technical Debt in Machine Learning Software 2023 Aaditya Bhatia
Foutse Khomh
Bram Adams
Ahmed E. Hassan
+ Analysis of Software Engineering Practices in General Software and Machine Learning Startups 2023 Bishal Lakha
Kalyan Bhetwal
Nasir U. Eisty
+ PDF Chat Analysis of Software Engineering Practices in General Software and Machine Learning Startups 2023 Bishal Lakha
Kalyan Bhetwal
Nasir U. Eisty
+ What are the Machine Learning best practices reported by practitioners on Stack Exchange? 2023 Anamaria Mojica-Hanke
Andrea Bayona
Mario Linares‐Vásquez
Steffen Herbold
Fabio A. González
+ PDF Chat Quality Assurance Challenges For Machine Learning Software Applications During Software Development Life Cycle Phases 2021 Md Abdullah Al Alamin
Gias Uddin
+ Quality Assurance Challenges for Machine Learning Software Applications During Software Development Life Cycle Phases 2021 Abdullah Al Alamin
Gias Uddin
+ Quality Assurance Challenges for Machine Learning Software Applications During Software Development Life Cycle Phases 2021 Md Abdullah Al Alamin
Gias Uddin
+ Hyperparameter Optimization for Effort Estimation 2018 Tianpei Xia
Rahul Krishna
Jianfeng Chen
George Mathew
Xipeng Shen
Tim Menzies
+ PDF Chat Achieving guidance in applied machine learning through software engineering techniques 2020 Lars M Reimann
Günter Kniesel-Wünsche
+ PDF Chat A Baseline Model for Software Effort Estimation 2015 Peter A. Whigham
Caitlin A. Owen
Stephen G. MacDonell
+ PDF Chat Adoption and Effects of Software Engineering Best Practices in Machine Learning 2020 Alex Serban
Koen van der Blom
Holger H. Hoos
Joost Visser

Works Cited by This (0)

Action Title Year Authors