Improved Lieb–Oxford bound on the indirect and exchange energies

Type: Article

Publication Date: 2022-09-15

Citations: 17

DOI: https://doi.org/10.1007/s11005-022-01584-5

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • Letters in Mathematical Physics - View

Similar Works

Action Title Year Authors
+ Improved Lieb-Oxford bound on the indirect and exchange energies 2022 Mathieu Lewin
Élliott H. Lieb
Robert Seiringer
+ A new estimate on the indirect Coulomb Energy 2011 Rafael D. Benguria
Gonzalo A. Bley
Michael Loss
+ A new estimate on the indirect Coulomb Energy 2011 Rafael D. Benguria
Gonzalo A. Bley
Michael Loss
+ PDF Chat Improved Lieb-Oxford exchange-correlation inequality with a gradient correction 2015 Mathieu Lewin
Élliott H. Lieb
+ PDF Chat One-dimensional Lieb–Oxford bounds 2020 Andre Laestadius
Fabian M. Faulstich
+ PDF Chat A New Estimate on the Two-Dimensional Indirect Coulomb Energy 2012 Rafael D. Benguria
Pablo Gallegos
Matěj Tušek
+ A lower bound for Coulomb energies 1979 Élliott H. Lieb
+ PDF Chat A new estimate on the indirect Coulomb energy 2011 Rafael D. Benguria
Gonzalo A. Bley
Michael Loss
+ PDF Chat A lower bound with the best possible constant for Coulomb Hamiltonians 1981 Walter Thirring
+ PDF Chat The Lieb–Oxford lower bounds on the Coulomb energy, their importance to electron density functional theory, and a conjectured tight bound on exchange 2022 John P. Perdew
Jianwei Sun
+ The Lieb-Oxford Lower Bounds on the Coulomb Energy, Their Importance to Electron Density Functional Theory, and a Conjectured Tight Bound on Exchange 2022 John P. Perdew
Jianwei Sun
+ PDF Chat Indirect Coulomb energy for two-dimensional atoms 2012 Rafael D. Benguria
Matěj Tušek
+ PDF Chat Empirical analysis of the Lieb–Oxford bound in ions and molecules 2008 Mariana M. Odashima
K. Capelle
+ PDF Chat Violation of a local form of the Lieb-Oxford bound 2012 J. G. Vilhena
E. Räsänen
Lauri Lehtovaara
Miguel A. L. Marques
+ PDF Chat How tight is the Lieb-Oxford bound? 2007 Mariana M. Odashima
K. Capelle
+ PDF Chat Nonempirical hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound 2009 Mariana M. Odashima
K. Capelle
+ PDF Chat On the lower bound on the exchange-correlation energy in two dimensions 2009 E. Räsänen
Stefano Pittalis
C. R. Proetto
K. Capelle
+ PDF Chat Relativistic Exchange Bounds 2024 Long Meng
Heinz Siedentop
Matthias Tiefenbeck
+ The optimal size of the exchange hole and reduction to one-particle Hamiltonians 2003 Paul Mancas
A. M�ller
Heinz Siedentop
+ The optimal size of the exchange hole and reduction to one-particle Hamiltonians 2004 Paul Mancas
A. M�ller
Heinz Siedentop