"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches

Type: Preprint

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2206.07918

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ What is the State of Neural Network Pruning 2020 Davis Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John V. Guttag
+ What is the State of Neural Network Pruning 2020 Davis Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
+ What is the State of Neural Network Pruning? 2020 Davis Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John V. Guttag
+ PDF Chat Effective Layer Pruning Through Similarity Metric Perspective 2024 Ian Pons
Bruno Yamamoto
Anna Helena Reali Costa
Artur JordĂŁo
+ PDF Chat “Understanding Robustness Lottery”: A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches 2024 Zhimin Li
Shusen Liu
Xin Yu
Bhavya Kailkhura
Jie Cao
James Diffenderfer
Peer‐Timo Bremer
Valerio Pascucci
+ Supervised Robustness-preserving Data-free Neural Network Pruning 2022 Mark Huasong Meng
Guangdong Bai
Sin G. Teo
Jin Song Dong
+ The Generalization-Stability Tradeoff In Neural Network Pruning 2019 Brian R. Bartoldson
Ari S. Morcos
Adrian Barbu
Gordon Erlebacher
+ PDF Chat Supervised Robustness-preserving Data-free Neural Network Pruning 2023 Mark Huasong Meng
Guangdong Bai
Sin G. Teo
Jin Song Dong
+ High-Robustness, Low-Transferability Fingerprinting of Neural Networks 2021 Siyue Wang
Xiao Wang
Pin‐Yu Chen
Pu Zhao
Xue Lin
+ High-Robustness, Low-Transferability Fingerprinting of Neural Networks 2021 Siyue Wang
Xiao Wang
Pin‐Yu Chen
Pu Zhao
Xue Lin
+ Neural Network Pruning by Gradient Descent 2023 Zhang Zhang
Ruyi Tao
Jiang Zhang
+ Pruning has a disparate impact on model accuracy 2022 Cuong Tran
Ferdinando Fioretto
Jungeun Kim
Rakshit Naidu
+ Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks 2023 Ju‐Young Yun
+ Lost in Pruning: The Effects of Pruning Neural Networks beyond Test Accuracy 2021 Lucas Liebenwein
Cenk Baykal
Brandon Carter
David K. Gifford
Daniela Rus
+ Comprehensive Assessment of the Performance of Deep Learning Classifiers Reveals a Surprising Lack of Robustness 2023 Michael Spratling
+ Not All Data Matters: An End-to-End Adaptive Dataset Pruning Framework for Enhancing Model Performance and Efficiency 2023 Suorong Yang
Hongchao Yang
Suhan Guo
Furao Shen
Jian Zhao
+ Deadwooding: Robust Global Pruning for Deep Neural Networks 2022 Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
+ Robustness to Pruning Predicts Generalization in Deep Neural Networks 2021 Lorenz Kuhn
Clare Lyle
Aidan N. Gomez
Jonas Rothfuss
Yarin Gal
+ PDF Chat SoK: On Finding Common Ground in Loss Landscapes Using Deep Model Merging Techniques 2024 Arham Khan
Todd Nief
Nathaniel Hudson
Mansi Sakarvadia
Daniel Grzenda
Aswathy Ajith
Jordan Pettyjohn
Kyle Chard
Ian Foster
+ PDF Chat Is it the model or the metric -- On robustness measures of deeplearning models 2024 Zhijin Lyu
Yutong Jin
Sneha Das

Works Cited by This (0)

Action Title Year Authors