Mirror Descent Maximizes Generalized Margin and Can Be Implemented Efficiently

Type: Preprint

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2205.12808

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A Unified Approach to Controlling Implicit Regularization via Mirror Descent 2023 Haoyuan Sun
Khashayar Gatmiry
Kwangjun Ahn
Navid Azizan
+ Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization 2019 Navid Azizan
Sahin Lale
Babak Hassibi
+ Achieving Margin Maximization Exponentially Fast via Progressive Norm Rescaling 2023 Mingze Wang
Zeping Min
Lei Wu
+ PDF Chat A Survey of Optimization Methods for Training DL Models: Theoretical Perspective on Convergence and Generalization 2025 Jing Wang
Anna Choromanska
+ PDF Chat Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection 2024 Aaron Alvarado Kristanto Julistiono
Davoud Ataee Tarzanagh
Navid Azizan
+ Gradient Descent Maximizes the Margin of Homogeneous Neural Networks 2019 Kaifeng Lyu
Jian Li
+ Large Margin Deep Neural Networks: Theory and Algorithms. 2015 Shizhao Sun
Wei Chen
Liwei Wang
Tie‐Yan Liu
+ Penalizing Gradient Norm for Efficiently Improving Generalization in Deep Learning 2022 Yang Zhao
Hao Zhang
Xiuyuan Hu
+ Gradient Descent Finds Global Minima for Generalizable Deep Neural Networks of Practical Sizes 2019 Kenji Kawaguchi
Jiaoyang Huang
+ Explicit Regularization via Regularizer Mirror Descent 2022 Navid Azizan
Sahin Lale
Babak Hassibi
+ Towards understanding how momentum improves generalization in deep learning 2022 Samy Jelassi
Yuanzhi Li
+ On the Maximum Hessian Eigenvalue and Generalization 2022 Simran Kaur
Jérémy Cohen
Zachary C. Lipton
+ Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization 2018 Jonas Köhler
Hadi Daneshmand
Aurélien Lucchi
Ming Zhou
Klaus Neymeyr
Thomas Hofmann
+ Exponential convergence rates for Batch Normalization: The power of length-direction decoupling in non-convex optimization 2018 Jonas Köhler
Hadi Daneshmand
Aurélien Lucchi
Ming Zhou
Klaus Neymeyr
Thomas Hofmann
+ Recent Advances in Large Margin Learning 2021 Yiwen Guo
Changshui Zhang
+ PDF Chat Recent Advances in Large Margin Learning 2021 Yiwen Guo
Changshui Zhang
+ PDF Chat Recent Advances in Large Margin Learning 2021 Yiwen Guo
Changshui Zhang
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh
+ Gradient Descent Provably Optimizes Over-parameterized Neural Networks 2018 Simon S. Du
Xiyu Zhai
Barnabás Póczos
Aarti Singh

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors