Robustness test of the <i>spacegroupMining</i> model for determining space groups from atomic pair distribution function data

Type: Article

Publication Date: 2022-05-16

Citations: 3

DOI: https://doi.org/10.1107/s1600576722002990

Abstract

Machine learning models based on convolutional neural networks have been used for predicting space groups of crystal structures from their atomic pair distribution function (PDF). However, the PDFs used to train the model are calculated using a fixed set of parameters that reflect specific experimental conditions, and the accuracy of the model when given PDFs generated with different choices of these parameters is unknown. In this paper, we report that the results of the top-1 accuracy and top-6 accuracy are robust when applied to PDFs of different choices of experimental parameters $r_\text{max}$, $Q_\text{max}$, $Q_\text{damp}$ and atomic displacement parameters.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Journal of Applied Crystallography - View

Similar Works

Action Title Year Authors
+ PDF Chat Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function 2019 Chia-Hao Liu
Yunzhe Tao
Daniel Hsu
Qiang Du
Simon J. L. Billinge
+ PDF Chat Designing a Dataset for Convolutional Neural Networks to Predict Space Groups Consistent with Extinction Laws 2024 Haolin Wang
Jiajun Zhong
Yikun Li
Junrong Zhang
Rong Du
+ Statistical Distribution of Crystallographic Groups for Inorganic Crystal Structure Database 2011 Miyako Fujiwara
H. Takeda
+ Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields Under the Microscope 2023 Gregory Fonseca
Igor Poltavsky
Alexandre Tkatchenko
+ Neural networks trained on synthetically generated crystals can extract structural information from ICSD powder X-ray diffractograms 2023 Henrik Schopmans
Patrick Reiser
Pascal Friederich
+ Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials 2023 Shengchao Liu
Weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
Chenru Duan
Zhiming Ma
Omar M. Yaghi
Anima Anandkumar
Christian Borgs
+ PDF Chat Neural networks trained on synthetically generated crystals can extract structural information from ICSD powder X-ray diffractograms 2023 Henrik Schopmans
Patrick Reiser
Pascal Friederich
+ From Patterson Maps to Atomic Coordinates: Training a Deep Neural Network to Solve the Phase Problem for a Simplified Case. 2020 David Hurwitz
+ Data-centric framework for crystal structure identification in atomistic simulations using machine learning 2022 Heejung W. Chung
Rodrigo Freitas
Gowoon Cheon
Evan J. Reed
+ Identification of Crystal Symmetry from Noisy Diffraction Patterns by A Shape Analysis and Deep Learning 2020 Leslie Ching Ow Tiong
Kim Jeongrae
Sang Soo Han
Dong-Hun Kim
+ PDF Chat SimXRD-4M: Big Simulated X-ray Diffraction Data Accelerate the Crystalline Symmetry Classification 2024 Bin Cao
Yang Liu
Zinan Zheng
Ruifeng Tan
Jia Li
Tong‐Yi Zhang
+ PDF Chat Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning 2020 Leslie Ching Ow Tiong
Kim Jeongrae
Sang Soo Han
Dong-Hun Kim
+ Composition based crystal materials symmetry prediction using machine learning with enhanced descriptors 2021 Yuxin Li
Rongzhi Dong
Wenhui Yang
Jianjun Hu
+ PDF Chat Accelerating Material Property Prediction using Generically Complete Isometry Invariants 2024 Jonathan Balasingham
Viktor Zamaraev
Vitaliy Kurlin
+ Matbench Discovery -- An evaluation framework for machine learning crystal stability prediction 2023 Janosh Riebesell
Rhys E. A. Goodall
Anubhav Jain
Philipp Benner
Kristin A. Persson
Alpha A. Lee
+ PDF Chat DScribe: Library of descriptors for machine learning in materials science 2022 Lauri Himanen
+ PDF Chat Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning 2021 Gregory Fonseca
Igor Poltavsky
Valentín Vassilev-Galindo
Alexandre Tkatchenko
+ Proposed definition of crystal substructure and substructural similarity 2014 Lusann Yang
Gerbrand Ceder
Stephen Dacek
+ PDF Chat Construction of crystal structure prototype database: methods and applications 2017 Chuanxun Su
Jian Lv
Quan Li
Hui Wang
Lijun Zhang
Yanchao Wang
Yanming Ma
+ PDF Chat Neural network based classification of crystal symmetries from x-ray diffraction patterns 2019 Pascal M. Vecsei
Kenny Choo
J. Chang
Titus Neupert

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors