Type: Article
Publication Date: 1999-12-01
Citations: 2
DOI: https://doi.org/10.1017/s0001867800009551
Let X i : i ≥ 1 be i.i.d. points in ℝ d , d ≥ 2, and let T n be a minimal spanning tree on X 1 ,…, X n . Let L ( X 1 ,…, X n ) be the length of T n and for each strictly positive integer α let N ( X 1 ,…, X n ;α) be the number of vertices of degree α in T n . If the common distribution satisfies certain regularity conditions, then we prove central limit theorems for L ( X 1 ,…, X n ) and N ( X 1 ,…, X n ;α). We also study the rate of convergence for E L ( X 1 ,…, X n ).
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Minimal spanning trees and Stein’s method | 2017 |
Sourav Chatterjee Sanchayan Sen |
+ | Multivariate tests of uniformity | 2015 |
Mengta Yang Reza Modarres |