Type: Article
Publication Date: 1994-02-01
Citations: 0
DOI: https://doi.org/10.2307/2154585
Let ${L_1}, \ldots ,{L_n}$ be lines in ${\mathbb {P}^2}$ and let $f,g:{\mathbb {P}^1} \to {\mathbb {P}^2}$ be nonconstant algebraic maps. For certain configurations of lines ${L_1}, \ldots ,{L_n}$, the hypothesis that, for $i = 1, \ldots ,n$, the inverse images ${f^{ - 1}}({L_i})$ and ${g^{ - 1}}({L_i})$ are equal, not necessarily with the same multiplicities, implies that $f$ is identically equal to $g$.
Action | Title | Year | Authors |
---|
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Non-Archimedian analytic functions taking the same values at the same points | 1971 |
William W. Adams E. G. Straus |
+ | Uniqueness theorems for holomorphic curves | 1990 |
Peter Hall |
+ | A Problem on Rational Functions | 1973 |
A. K. Pizer |