The Density of Zeros of Forms for which Weak Approximation Fails

Type: Article

Publication Date: 1992-10-01

Citations: 6

DOI: https://doi.org/10.2307/2153078

Abstract

The weak approximation principle fails for the forms ${x^3} + {y^3} + {z^3} = k{w^3}$ , when $k = 2$ or 3. The question therefore arises as to what asymptotic density one should predict for the rational zeros of these forms. Evidence, both numerical and theoretical, is presented, which suggests that, for forms of the above type, the product of the local densities still gives the correct global density.

Locations

  • Mathematics of Computation - View
  • Oxford University Research Archive (ORA) (University of Oxford) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics 2019 Thomas Bothner
Peter D. Miller
+ Saddle points of rational functions 2019 Guangming Zhou
Qin Wang
Wenjie Zhao
+ Growth Behavior and Zero Distribution of Rational Approximants 2010 Hans-Peter Blatt
Ralitza Kovacheva
+ Rational Solutions of the Painlev\'e-III Equation: Large Parameter Asymptotics 2018 Thomas Bothner
Peter D. Miller
+ Representations of Numbers as å k =- n n e k k \sum_{k=-n}^n \varepsilon_k k: A Saddle Point Approach. 2007 Guy Louchard
Helmut Prodinger
+ Rational Solutions of the Painlevé-III Equation: Large Parameter Asymptotics 2018 Thomas Bothner
Peter D. Miller
+ PDF Chat Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions 2024 Ahmad Barhoumi
O. Lisovyy
Peter D. Miller
Andrei Prokhorov
+ The Weitzenböck Formula 2003 P. L. Antonelli
+ Representations of numbers as ∑nk=−nεkk: A saddle point approach 2010 Guy Louchard
Helmut Prodinger
+ Normal Forms 2017 Kenneth R. Meyer
Daniel C. Offin
+ Painlevé-III Monodromy Maps Under the $D_6\to D_8$ Confluence and Applications to the Large-Parameter Asymptotics of Rational Solutions 2023 Ahmad Barhoumi
O. Lisovyy
Peter D. Miller
Andrei Prokhorov
+ Density of the rational functions 1999 Adhemar Bultheel
Pablo González-Vera
Erik Hendriksen
Olav Njåstad
+ Logarithmic forms 2008 A. Baker
Gisbert Wüstholz
+ Quadratische und hermitesche Formen 1986 Felix R. Gantmacher
+ Konsistenz- und Unabhängigkeitsresultate in der Theorie der quadratischen Formen 1989 Otmar Spinas
+ Vereinfachung der Theorie der binären quadratischen Formen von positiver Determinante 2013 Peter Gustav Lejeune Dirichlet
+ Обобщенное одномерное преобразование Данкля в прямых задачах теории приближений 2024 В. И. Иванов
+ Hermite Form 2005
+ Bloch Function 2005
+ Über das Maß positiver ternärer quadratischer Formen 1952 Heinrich Brandt