Type: Preprint
Publication Date: 2020-11-15
Citations: 1
DOI: https://doi.org/10.1101/2020.11.11.20230250
Abstract The current outbreak of COVID-19 is a major pandemic that has shaken up the entire world in a short time. South Africa has the highest number of COVID-19 cases in Africa and understanding the country’s disease trajectory is important for government policy makers to plan the optimal COVID-19 intervention strategy. The number of cases is highly correlated with the number of COVID-19 tests undertaking. Thus, current methods of understanding the COVID-19 transmission process in the country based only on the number of cases can be misleading. In light of this, we propose to estimate both the probability of positive cases per tests conducted (the positive testing rate) and the rate in which the positive testing rate changes over time (its derivative) using a flexible semi-parametric model. We applied the method to the observed positive testing rate in South Africa with data obtained from March 5th to September 2nd 2020. We found that the positive testing rate was declining from early March when the disease was first observed until early May where it kept on increasing. In the month of July 2020, the infection reached its peak then its started to decrease again indicating that the intervention strategy is effective. From mid August, 2020, the rate of change of the positive testing rate indicates that decline in the positive testing rate is slowing down, suggesting that a less effective intervention is currently implemented.