A General Theory of Canonical Forms

Type: Article

Publication Date: 1987-04-01

Citations: 33

DOI: https://doi.org/10.2307/2000369

Abstract

If $G$ is a compact Lie group and $M$ a Riemannian $G$-manifold with principal orbits of codimension $k$ then a section or canonical form for $M$ is a closed, smooth $k$-dimensional submanifold of $M$ which meets all orbits of $M$ orthogonally. We discuss some of the remarkable properties of $G$-manifolds that admit sections, develop methods for constructing sections, and consider several applications.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A general theory of canonical forms 1987 Richard S. Palais
Chuu-Lian Terng
+ Low Dimensional Polar Actions 2014 Francisco J. Gozzi
+ Lie Groups 2016 Gary R. Jensen
Emilio Musso
Lorenzo Nicolodi
+ The Riemannian geometry of orbit spaces. The metric, geodesics, and integrable systems 2001 Dmitry V. Alekseevsky
Andreas Kriegl
Mark Losik
Peter W. Michor
+ Basic differential forms for actions of Lie groups 1994 Peter W. Michor
+ Differential geometry of $\frak g$-manifolds 1993 Dimitri Alekseevsky
Peter W. Michor
+ Low Dimensional Polar Actions 2014 Francisco J. Gozzi
+ The Riemannian geometry of orbit spaces -- the metric, geodesics, and integrable systems 2003 Dmitri V. Alekseevsky
Andreas Kriegl
Mark Losik
Peter W. Michor
+ Reduction of generalized complex structures 2007 Mathieu Stiénon
Ping Xu
+ Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type 2006 M. Benyounes
E. Loubeau
Carol Wood
+ The Riemannian and symplectic geometry of the space of generalized Kähler structures 2023 Vestislav Apostolov
Jeffrey Streets
Yury Ustinovskiy
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si40.gif" display="inline" overflow="scroll"><mml:mstyle mathvariant="normal"><mml:mi>Sp</mml:mi></mml:mstyle><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> structures on 14-dimensional manifolds 2013 Ilka Agricola
Thomas Friedrich
Jos Höll
+ Lie Groups 2012 John M. Lee
+ PDF Chat None 2002 Guillaume Jamet
+ The spectral geometry of the canonical Riemannian submersion of a compact Lie group 2007 Corey Dunn
Peter Gilkey
JeongHyeong Park
+ Homogeneity for a Class of Riemannian Quotient Manifolds 2016 Joseph A. Wolf
+ Homogeneity for a Class of Riemannian Quotient Manifolds 2016 Joseph A. Wolf
+ Smooth Manifolds 2011 Joachim Hilgert
Karl‐Hermann Neeb
+ Differential geometry of g-manifolds 1995 Dmitri V. Alekseevsky
Peter W. Michor
+ Parallel Connections Over Symmetric Spaces 1997 Luis Guijarro
Lorenzo Sadun
Gerard Walschap