The Generalized Integro-Exponential Function

Type: Article

Publication Date: 1985-04-01

Citations: 19

DOI: https://doi.org/10.2307/2007964

Abstract

The generalized integro-exponential function is defined in terms of the exponential integral (incomplete gamma function) and its derivatives with respect to order. A compendium of analytic results is given in one section. Rational minimax approximations sufficient to permit the computation of the first six first-order functions are reported in another section.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The generalized integro-exponential function 1985 Michael Milgram
+ Evaluation of the exponential integral function with higher accuracy 1982 D. N. Rachkovskiı̆
+ PDF Chat Recent results for generalized exponential integrals 1990 C. Chiccoli
S. Lorenzutta
G. Maino
+ The Gamma Function 2021 Charles H. C. Little
Kee L. Teo
Bruce van Brunt
+ PDF Chat Numerical computation of a generalized exponential integral function 1974 William F. Breig
A.L. Crosbie
+ PDF Chat Numerical Computation of a Generalized Exponential Integral Function 1974 W. F. Breig
A. L. Crosbie
+ On the evaluation of generalized exponential integral functions 2006 I. I. Guseinov
Б. А. Мамедов
+ Exact series expansions, recurrence relations, properties and integrals of the generalized exponential integral functions 2006 Zekeri̇ya Altaç
+ The exponential function 2022 David Masser
+ PDF Chat Evaluation of generalized exponential integrals using multinomial expansion theorems 2007 Б. А. Мамедов
Ziya Merdan
I. M. Askerov
+ The Gamma Function 2014 Wolfram Koepf
+ PDF Chat General Properties of Generalized Gamma-Functions 2016 N. O. Virchenko
+ Calculation of Special Functions, the Gamma Function, the Exponential Integrals and Error-Like Functions (C. G. van der Laan and N. M. Temme) 1987 K. S. Kölbig
+ The Exponential Function 1957 John G. Kemeny
+ RATIONAL APPROXIMATION TO THE EXPONENTIAL FUNCTION 1977 Q. I. Rahman
Gerhard Schmeißer
+ The 𝑠-function and the exponential integral 2007 Leonid Slavin
Alexander Volberg
+ Formulae for the exponential, the hyperbolic and the trigonometric functions in terms of the logarithmic function 1991 Eleni G. Anastasselou
N. I. Ioakimidis
+ The gamma function 2011 Greg Gbur
+ The Gamma Function 2001 Albert D. Wheelon
+ The gamma function 2006 Hugh L. Montgomery
R. C. Vaughan