A Theory of Stiefel Harmonics

Type: Article

Publication Date: 1974-05-01

Citations: 15

DOI: https://doi.org/10.2307/1996816

Abstract

An explicit theory of special functions is developed for the homogeneous space $SO(n)/SO(n - m)$ generalizing the classical theory of spherical harmonics. This theory is applied to describe the decomposition of the Fourier operator on $n \times m$ matrix space in terms of operator valued Bessel functions of matrix argument. Underlying these results is a hitherto unnoticed relation between certain irreducible representations of $SO(n)$ and the polynomial representations of $GL(m,{\mathbf {C}})$.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A theory of Stiefel harmonics 1974 Stephen Gelbart
+ Spherical functions associated with $S^n$ of Fundamental $K$-type 2013 Juan Tirao
Ignacio ZurriƔn
+ Spherical Functions of Fundamental $K$-Type on the $n$-dimensional Sphere 2013 Juan Tirao
Ignacio ZurriƔn
+ PDF Chat Special Functions and Orthogonal Polynomials 2016
+ Special Functions and Orthogonal Polynomials 2009 Inna K. Shingareva
Carlos LizĆ”rragaā€Celaya
+ Bessel Functions of Matrix Argument 1955 Carl Herz
+ PDF Chat Spherical Functions of Fundamental K-Types Associated with the n-Dimensional Sphere 2014 Juan Tirao
Ignacio ZurriƔn
+ Christoffel type functions for m-orthogonal polynomials 2005 Ying Shi
+ Special Orthogonal Polynomials 1999 George E. Andrews
Richard Askey
Ranjan Roy
+ Spherical Harmonics in p Dimensions 2012 Christopher Frye
Costas Efthimiou
+ PDF Chat Orthogonal Polynomials and Special Functions 2003
+ Orthogonal Polynomials and Special Functions 2024 Elsa Graneland
+ Orthogonal Polynomials and Special Functions 1975 Richard Askey
+ PDF Chat A New Class of Orthogonal Polynomials: The Bessel Polynomials 1949 H. L. Krall
Orrin Frink
+ PDF Chat A new derivation of the plane wave expansion into spherical harmonics and related Fourier transforms 2004 Agata Bezubik
Agata Dbrowska
Aleksander Strasburger
+ PDF Chat Spherical Harmonics in p Dimensions 2014 Costas Efthimiou
Christopher Frye
+ PDF Chat Lie Group Representations and Harmonic Polynomials of a Matrix Variable 1976 Tuong Ton-That
+ Jacobi and Gegenbauer polynomials as spherical harmonics 1968 B. L. J. Braaksma
+ Spectral theory and special functions 2001 Erik Koelink
+ A Functional Approach to Special Functions and Orthogonal Polynomials 2023