Explicit Estimates for the Error Term in the Prime Number Theorem for Arithmetic Progressions

Type: Article

Publication Date: 1984-01-01

Citations: 15

DOI: https://doi.org/10.2307/2007579

Abstract

We give explicit numerical estimates for the Chebyshev functions <¡/(x; k.l) and 9{x; k, I) for certain nonexceptional moduli k.For values of e andb, a constant c is tabulated such that \ip(x; k, I) -x/<p(fc)| < ex/tp(k), provided (&,/) = 1, x > exp(clog2 k), and k > 10*.The methods are similar to those used by Rosser and Schoenfeld in the case k » 1, but are based on explicit estimates of N(T,\) and an explicit zero-free region for Dirichlet /.-functions.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Explicit estimates for the error term in the prime number theorem for arithmetic progressions 1984 Kevin S. McCurley
+ PDF Chat Primes in arithmetic progressions 1996 Olivier Ramaré
Robert Rumely
+ Sharper Bounds for the Chebyshev function $\theta(x)$ 2020 Samuel Broadbent
Habiba Kadiri
Allysa Lumley
Nathan Ng
Kirsten Wilk
+ PDF Chat Some explicit estimates for the error term in the prime number theorem 2023 Daniel R. Johnston
Andrew Yang
+ Sharper Bounds for the Chebyshev function $θ(x)$ 2020 S. Broadbent
Habiba Kadiri
Allysa Lumley
Nathan Ng
Kirsten Wilk
+ Some explicit estimates for the error term in the prime number theorem 2022 Daniel R. Johnston
Andrew Yang
+ Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis 2021 Anne-Maria Ernvall-Hytönen
Neea Palojärvi
+ Sharper bounds for the error term in the Prime Number Theorem 2022 Andrew Fiori
Habiba Kadiri
Joshua Swindisky
+ The prime number theorem for primes in arithmetic progressions at large values 2023 Ethan Simpson Lee
+ Sharper bounds for the error in the prime number theorem assuming the Riemann Hypothesis 2023 Ethan Simpson Lee
Paweł Nosal
+ Explicit bounds for primes in arithmetic progressions 2018 Michael A. Bennett
Greg S. Martin
Kevin O’Bryant
Andrew Rechnitzer
+ Explicit Estimates for Functions of Primes in Arithmetic Progressions 1981 Kevin S. McCurley
+ Accurate Computations of Euler Products over Primes in Arithmetic Progressions 2019 Olivier Ramaré
+ Accurate computations of Euler products over primes in arithmetic progressions 2021 Olivier Ramaré
+ Explicit bound for the number of primes in arithmetic progressions assuming the Generalized Riemann Hypothesis 2020 Anne-Maria Ernvall-Hytönen
Neea Palojärvi
+ Explicit formulae for primes in arithmetic progressions, I 2013 Tomohiro Yamada
+ PDF Chat The prime number theorem for primes in arithmetic progressions at large values 2023 Ethan Simpson Lee
+ Sharper bounds for the Chebyshev function $ψ(x)$ 2022 Andrew Fiori
Habiba Kadiri
Joshua Swidinsky
+ PDF Chat Explicit bounds for primes in arithmetic progressions 2018 Michael A. Bennett
Greg Martin
Kevin O’Bryant
Andrew Rechnitzer
+ Global numerical bounds for the number-theoretic omega functions 2023 Mehdi Hassani