Lucas pseudoprimes

Type: Article

Publication Date: 1980-01-01

Citations: 63

DOI: https://doi.org/10.1090/s0025-5718-1980-0583518-6

Abstract

We define several types of pseudoprimes with respect to Lucas sequences and prove the analogs of various theorems about ordinary pseudoprimes. For example, we show that Lucas pseudoprimes are rare and we count the Lucas sequences modulo<italic>n</italic>with respect to which<italic>n</italic>is a Lucas pseudoprime. We suggest some powerful new primality tests which combine Lucas pseudoprimes with ordinary pseudoprimes. Since these tests require the evaluation of the least number<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis n right-parenthesis"><mml:semantics><mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">f(n)</mml:annotation></mml:semantics></mml:math></inline-formula>for which the Jacobi symbol<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis f left-parenthesis n right-parenthesis slash n right-parenthesis"><mml:semantics><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">(f(n)/n)</mml:annotation></mml:semantics></mml:math></inline-formula>is less than 1, we evaluate the average order of the function<italic>f</italic>.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A lower bound for the counting function of Lucas pseudoprimes 1988 Péter L. Erdős
Péter Kiss
Andràs Sárközy
+ PDF Chat Lucas Pseudoprimes 1980 Robert Baillie
Samuel S. Wagstaff
+ PDF Chat The Rabin-Monier theorem for Lucas pseudoprimes 1997 François Arnault
+ Lucas pseudoprimes 2000 A. Rotkiewicz
+ Extensions in the theory of Lucas and Lehmer pseudoprimes 2005 Andrew D. Loveless
+ PDF Chat The distribution of Lucas and elliptic pseudoprimes 1991 Daniel M. Gordon
Carl Pomerance
+ Lucas Pseudoprimes of Special Types 2008 Lawrence Somer
+ Weak Pseudoprimality Associated with the Generalized Lucas Sequences 2022 Dorin Andrica
Ovidiu Bagdasar
Michael Th. Rassias
+ Tabulating Absolute Lucas Pseudoprimes 2023 Chloe Helmreich
Jonathan Webster
+ Some Remarks on Primality Testing Based on Lucas Functions 2023 Siguna Müller
+ SOME REMARKS ON LUCAS PSEUDOPRIMES 2012 Noriyuki Suwa
+ PDF Chat Square-free Lucas d-pseudoprimes and Carmichael-Lucas numbers 2007 Walter Carlip
Lawrence Somer
+ Primality testing with Lucas functions 1993 Rudolf Lidl
Winfried Müller
+ PDF Chat On Generalized Lucas Pseudoprimality of Level k 2021 Dorin Andrica
Ovidiu Bagdasar
+ A generalized Lucas sequence and permutation binomials 2005 Amir Akbary
Qiang Wang
+ Lucas Pseudoprimes are Odd 1994 Paul S. Bruckman
+ LUCAS SEQUENCES {Uk} FOR WHICH U2p AND Up ARE PSEUDOPRIMES FOR ALMOST ALL PRIMES p 2003 Lawrence Somer
+ PDF Chat Tabulating absolute Lucas pseudoprimes 2024 Chloe Helmreich
Jonathan Webster
+ Pseudoprimality related to the generalized Lucas sequences 2021 Dorin Andrica
Ovidiu Bagdasar
+ Arithmetical progressions formed by Lucas pseudoprimes 1998 A. Rotkiewicz