Report on 2008.05442v2

Type: Peer-Review

Publication Date: 2021-04-10

Citations: 0

DOI: https://doi.org/10.21468/scipost.report.2774

Download PDF

Abstract

While Anderson localisation is largely well-understood, its description has traditionally been rather cumbersome.A recently-developed theory -Localisation Landscape Theory (LLT) -has unparalleled strengths and advantages, both computational and conceptual, over alternative methods.To begin with, we demonstrate that the localisation length cannot be conveniently computed starting directly from the exact eigenstates, thus motivating the need for the LLT approach.Then, we confirm that the Hamiltonian with the effective potential of LLT has very similar low energy eigenstates to that with the physical potential, justifying the crucial role the effective potential plays in our new method.We proceed to use LLT to calculate the localisation length for very low-energy, maximally localised eigenstates, as defined by the length-scale of exponential decay of the eigenstates, (manually) testing our findings against exact diagonalisation.We then describe several mechanisms by which the eigenstates spread out at higher energies where the tunnelling-in-the-effective-potential picture breaks down, and explicitly demonstrate that our method is no longer applicable in this regime.We place our computational scheme in context by explaining the connection to the more general problem of multidimensional tunnelling and discussing the approximations involved.Our method of calculating the localisation length can be applied to (nearly) arbitrary disordered, continuous potentials at very low energies.

Locations

  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ PDF Chat Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2021 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Computing the eigenstate localisation length from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 SS Shamailov
D. J. Brown
TA Haase
M. D. Hoogerland
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="script">L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> localization landscape for highly excited states 2020 LoĂŻc Herviou
Jens H. Bardarson
+ Exact Spectral Statistics in Strongly Localising Circuits 2021 Bruno Bertini
Pavel Kos
TomaĆŸ Prosen
+ The Fock-space landscape of many-body localisation 2024 Sthitadhi Roy
David E. Logan
+ Local integrals of motion and the stability of many-body localisation in Wannier-Stark potentials 2022 Christian Bertoni
J. Eisert
A. Kshetrimayum
Alexander Nietner
S. J. Thomson
+ PDF Chat The Fock-space landscape of many-body localisation 2024 Sthitadhi Roy
David E. Logan
+ PDF Chat Report on 1903.04851v1 2019 Sthitadhi Roy
David E. Logan
+ PDF Chat Construction of exact constants of motion and effective models for many-body localized systems 2018 M. Goihl
Marek Gluza
Christian Krumnow
Jens Eisert
+ PDF Chat A Stochastic Method to Compute the <i>L</i><sup>2</sup> Localisation Landscape 2023 Masataka Kakoi
Keith Slevin
+ PDF Chat Absence of Mobility Edge in Short-Range Uncorrelated Disordered Model: Coexistence of Localized and Extended States 2023 Adway Kumar Das
Anandamohan Ghosh
Ivan M. Khaymovich
+ PDF Chat Higher-order localization landscape theory of Anderson localization 2024 S. E. Skipetrov
+ Probing localization properties of many-body Hamiltonians via an imaginary vector potential 2023 Liam O’Brien
Gil Refael

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (29)

Action Title Year Authors
+ PDF Chat Simulation of Anderson localization in two-dimensional ultracold gases for pointlike disorder 2015 W. Morong
Brian DeMarco
+ PDF Chat Disorder and interference: localization phenomena 2011 Cord A. MĂŒller
Dominique Delande
+ PDF Chat Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor 2015 Isam Manai
Jean‐François ClĂ©ment
Radu Chicireanu
Clément Hainaut
Jean Claude Garreau
Pascal Szriftgiser
Dominique Delande
+ PDF Chat Anderson localization in two-dimensional graphene with short-range disorder: One-parameter scaling and finite-size effects 2014 Zheyong Fan
Andreas Uppstu
Ari Harju
+ PDF Chat Anderson localization of a non-interacting Bose–Einstein condensate 2008 G. Roati
Chiara D’Errico
L. Fallani
M. Fattori
C. Fort
Matteo Zaccanti
Giovanni Carlo Modugno
M. Modugno
M. Inguscio
+ PDF Chat Anisotropic 2D Diffusive Expansion of Ultracold Atoms in a Disordered Potential 2010 Martin Robert-De-Saint-Vincent
Jean-Philippe Brantut
Baptiste Allard
Thomas Plisson
Luca PezzĂš
Laurent Sanchez-Palencia
A. Aspect
Thomas Bourdel
Philippe Bouyer
+ PDF Chat Exponents of the localization length in the 2D Anderson model with off‐diagonal disorder 2004 Andrzej Eilmes
Rudolf A. Römer
+ PDF Chat Anderson localization of electron states in graphene in different types of disorder 2007 Shi‐Jie Xiong
Ye Xiong
+ PDF Chat Anderson localization of matter waves in tailored disordered potentials 2012 Marie Piraud
Alain Aspect
Laurent Sanchez-Palencia
+ PDF Chat Analytical and numerical study of uncorrelated disorder on a honeycomb lattice 2013 Kean Loon Lee
Benoßt Grémaud
Christian Miniatura
Dominique Delande