Topological horseshoes

Type: Article

Publication Date: 2001-02-15

Citations: 150

DOI: https://doi.org/10.1090/s0002-9947-01-02586-7

Locations

  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Positive sequence topological entropy characterizes chaotic maps 1991 N. Franzová
J. Smı́tal
+ Topological horseshoes in continuous maps 2006 Xiao‐Song Yang
+ PDF Chat Periodic points and topological entropy of maps of the circle 1983 Chris Bernhardt
+ TOPOLOGICAL HORSESHOES AND COMPUTER ASSISTED VERIFICATION OF CHAOTIC DYNAMICS 2009 Xiao‐Song Yang
+ PDF Chat 𝜔-chaos and topological entropy 1993 Shi Hai Li
+ PDF Chat Chaotic functions with zero topological entropy 1986 J. Smı́tal
+ PDF Chat On the prevalence of horseshoes 1981 Lai Sang Young
+ Horseshoes in piecewise continuous maps 2003 Xiao‐Song Yang
Yun Tang
+ For graph maps, one scrambled pair implies Li-Yorke chaos 2014 Sylvie Ruette
L’ubomı́r Snoha
+ Topological Dynamics 2020 Anima Nagar
C. R. E. Raja
+ PDF Chat Bizarre topology is natural in dynamical systems 1995 Judy Kennedy
James A. Yorke
+ PDF Chat Chaotic maps with rational zeta function 1987 Helena E. Nusse
+ PDF Chat A canonical partition of the periodic orbits of chaotic maps 1985 Kathleen T. Alligood
+ A planar topological horseshoe theory with applications to computer verifications of chaos 2005 Xiao‐Song Yang
Huimin Li
Yan Huang
+ PDF Chat Periods of periodic points of maps of the circle which have a fixed point 1981 Louis Block
+ PDF Chat Infinitely many co-existing sinks from degenerate homoclinic tangencies 1991 Gregory J. Davis
+ PDF Chat Pseudocircles in dynamical systems 1994 Judy Kennedy
James A. Yorke
+ Cycle doubling, merging, and renormalization in the tangent family 2018 Tao Chen
Yunping Jiang
Linda Keen
+ PDF Chat Noncommutative topological dynamics. II 1984 Daniel Avitzour
+ Devaney’s chaos implies existence of 𝑠-scrambled sets 2004 Jiehua Mai