The Distribution of Smooth Numbers in Arithmetic Progressions

Type: Article

Publication Date: 1992-05-01

Citations: 4

DOI: https://doi.org/10.2307/2159561

Abstract

We estimate the number of integers $n$ up to $x$ in the arithmetic progression $a(\bmod q)$ with $n$ free of prime factors exceeding $y$. For a wide range of the variables $x,y,q$, and $a$ we show that this number is about $x/(q{u^u})$, where $u = \log x/\log y$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The distribution of smooth numbers in arithmetic progressions 2007 K. Soundararajan
+ The distribution of smooth numbers in arithmetic progressions 2008 K. Soundararajan
+ PDF Chat Smooth values of shifted primes in arithmetic progressions 2004 William D. Banks
Asma Harcharras
Igor E. Shparlinski
+ PDF Chat The distribution of smooth numbers in arithmetic progressions 1992 Antal Balog
Carl Pomerance
+ PDF Chat Integers with a Large Smooth Divisor 2007 William D. Banks
Igor E. Shparlinski
+ Integers with a large smooth divisor 2006 William D. Banks
Igor E. Shparlinski
+ A lower bound for the variance in arithmetic progressions of some multiplicative functions close to $1$ 2021 Daniele Mastrostefano
+ Smooth numbers are orthogonal to nilsequences 2022 Lilian Matthiesen
Mengdi Wang
+ Prime numbers in short arithmetic progressions 2014 Dimitris Koukoulopoulos
+ PDF Chat Fast Bounds on the Distribution of Smooth Numbers 2006 Scott T. Parsell
Jonathan Sorenson
+ The distribution of the divisor function in arithmetic progressions 2012 Prapanpong Pongsriiam
+ A lower bound for the variance in arithmetic progressions of some multiplicative functions close to $1$ 2021 Daniele Mastrostefano
+ A note on the distribution of primes in arithmetic progressions 1972 Thomas Moore
+ Chen primes in arithmetic progressions 2016 Paweł Lewulis
+ Chen primes in arithmetic progressions 2016 Paweł Karasek
+ Chen primes in arithmetic progressions 2016 Paweł Lewulis
+ PDF Chat Chen primes in arithmetic progressions 2018 Paweł Lewulis
+ On the density of integers of the form 2 k + p in arithmetic progressions 2010 Xue Sun
+ PDF Chat SMOOTH NUMBERS IN SHORT INTERVALS 2007 Ernie Croot
+ Smooth squarefree and square-full integers in arithmetic progressions 2018 Marc Munsch
Igor E. Shparlinski
Kam Hung Yau