The Bohr compactification, modulo a metrizable subgroup

Type: Article

Publication Date: 1993-01-01

Citations: 30

DOI: https://doi.org/10.4064/fm-143-2-119-136

Abstract

The authors prove the following result, which generalizes a well-known theorem of I. Glicksberg [G]: If G is a locally compact Abelian group with Bohr compactification bG, and if N is a closed metrizable subgroup of bG, then every A ⊆ G satisfies: A·(N ∩

Locations

  • Fundamenta Mathematicae - View - PDF

Similar Works

Action Title Year Authors
+ The Bohr compactification, modulo a metrizable subgroup 1993 W. W. Comfort
F. Javier Trigos-Arrieta
Ta-Sun Wu
+ A theorem on the Bohr compactification of a locally compact Abelian group 1965 N. Th. Varopoulos
+ The Bohr compactification of an abelian group as a quotient of its Stone–Čech compactification 2020 Pavol Zlatoš
+ The Bohr compactification of an abelian group as a quotient of its Stone-Čech compactification 2018 Pavol Zlatoš
+ The Bohr compactification of an arithmetic group 2025 Bachir Bekka
+ The Bohr compactification of an abelian group as a quotient of its Stone-\v{C}ech compactification 2018 Pavol Zlatoš
+ Correction to the paper “The Bohr compactification, modulo a metrizable subgroup” (Fund. Math. 143 (1993), 119–136) 1997 W. W. Comfort
F. Javier Trigos-Arrieta
Ta-Sun Wu
+ PDF Chat A Theorem of C. Ryll-Nardzewski and Metrizable L.C.A. Groups 1980 L. Thomas Ramsey
+ Remarks on a Theorem of Glicksberg 2020 W. W. Comfort
F. Javier Trigos-Arrieta
+ Some remarks on subgroups defined by the Bohr compactification 1983 Robert P. Hunter
+ PDF Chat A theorem of C. Ryll-Nardzewski and metrizable l.c.a. groups 1980 L. Thomas Ramsey
+ The torsion Bohr topology for Abelian groups 2013 Omar Becerra-Muratalla
+ When a totally bounded group topology is the Bohr topology of a LCA group 2019 Salvador Hernández
F. Javier Trigos-Arrieta
+ Abundance of $\sigma$-compact non-compactly generated groups witnessed by the Bohr topology of an abelian group (General and geometric topology today and their problems) 2008 Dikran Dikranjan
Dmitri Shakhmatov
+ PDF Chat Compactness in Hom(<i>G</i>, <i>H</i>) 1970 H. H. Corson
Irving Glicksberg
+ The Čech–Stone compactification of a discrete groupoid 1991 Eric K. van Douwen
+ The Bohr compactification of an arithmetic group 2023 Bachir Bekka
+ PDF Chat Bohr compactifications of a locally compact abelian group I 1943 Hirotada Anzai
Shizuo Kakutkni
+ Remarks on the Bohr-torsion topology of a locally compact Abelian group 2017 F. Javier Trigos-Arrieta
+ PDF Chat On the G-compactifications of the rational numbers 2008 Jan van Mill