On the Analyticity of Solutions of First-Order Nonlinear PDE

Type: Article

Publication Date: 1992-06-01

Citations: 4

DOI: https://doi.org/10.2307/2154131

Abstract

Let $(x,t) \in {R^m} \times R$ and $u \in {C^2} ({R^m} \times R)$. We discuss local and microlocal analyticity for solutions $u$ to the nonlinear equation \[ {u_t}= f(x,t,u,{u_x})\] . Here $f(x,t,{\zeta _0},\zeta )$ is complex valued and analytic in all arguments. We also assume $f$ to be holomorphic in $({\zeta _0},\zeta ) \in C \times {C^m}$. In particular we show that \[ {\text {WF}}_A u \subset \operatorname {Char}({L^u})\] where ${\text {WF}}_A$ denotes the analytic wave-front set and $\operatorname {Char}({L^u})$ is the characteristic set of the linearized operator \[ {L^u}= \partial /\partial t - \sum \partial f/\partial {\zeta _j}(x,t,u,{u_x})\;\partial /\partial {x_j}\] . If we assume $u \in {C^3}\;({R^m} \times R)$ then we show that the analyticity of $u$ propagates along the elliptic submanifolds of ${L^u}$.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the analyticity of solutions of first-order nonlinear PDE 1992 Nicholas Hanges
François Trèves
+ PDF Chat On microlocal analyticity of solutions of first-order nonlinear PDE 2009 Shif Berhanu
+ Analyticity and Smoothness for a Class of First Order Nonlinear PDEs 2015 S. Berhanu
+ On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>-estimates for a class of non-local elliptic equations 2011 Hongjie Dong
Doyoon Kim
+ PDF Chat Local solvability for a quasilinear wave equation with the far field degeneracy: 1D case 2022 Yuusuke Sugiyama
+ Local solvability for a quasilinear wave equation with the far field degeneracy: 1D case 2022 Yuusuke Sugiyama
+ PDF Chat Local well-posedness for dispersive equations with bounded data 2024 Jianguo Zhao
+ PDF Chat Calder\'on problem for nonlocal viscous wave equations: Unique determination of linear and nonlinear perturbations 2024 Philipp Zimmermann
+ On the Cauchy problem for a first-order quasi-linear equation in the class of locally integrable functions 1988 E. Yu. Panov
+ PDF Chat Local solutions for quasi-linear parabolic equations 1966 Reiko Arima
+ Large data local well-posedness for a class of KdV-type equations II 2013 Benjamin Harrop‐Griffiths
+ Large data local well-posedness for a class of KdV-type equations II 2013 Benjamin Harrop‐Griffiths
+ Local Cauchy problem for linear partial differential equations with analytic coefficients 1969 François Trèves
+ On microlocal analyticity and smoothness of solutions of first-order nonlinear PDEs 2011 Z. Adwan
S. Berhanu
+ Local analytic solutions of a functional differential equation 2009 Lingxia Liu
+ Fractional differentiability for solutions of nonlinear elliptic equations 2016 Antonio L. Baisón
Albert Clop
Raffaella Giova
Joan Orobitg
Antonia Passarelli di Napoli
+ Existence and Uniqueness of Global Solutions to Fully Nonlinear First Order Elliptic Systems 2014 Nikos Katzourakis
+ PDF Chat On parabolic problems with non-Lipschitz nonlinearity 2008 Oleg Zubelevich
+ Local analytic solutions to some nonhomogeneous problems with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math>-Laplacian 2007 Gabriella Bognár
+ PDF Chat Boundedness of non-local operators with spatially dependent coefficients and $$L_p$$-estimates for non-local equations 2023 Hongjie Dong
Pilgyu Jung
Doyoon Kim