On a linear model of swinging with a periodic step function coefficient

Type: Article

Publication Date: 2015-11-30

Citations: 2

DOI: https://doi.org/10.14232/actasm-015-510-9

Locations

  • Acta Scientiarum Mathematicarum - View

Similar Works

Action Title Year Authors
+ Oscillations of a pendulum with a periodically varying length and a model of swing 1999 Mark A. Pinsky
A. A. Zevin
+ An Analysis of the Oscillation in a Swinging Atwood Type System 2016 Funada Toshio
Katsuhisa Ohba
+ A linear differential equation with a time-periodic damping coefficient: stability diagram and an application 2004 A. H. P. van der Burgh
+ On the parametrically excited pendulum equation with a step function coefficient 2015 László Hatvani
+ On Local Analysis of Oscillations of a Non-ideal and Non-linear Mechanical Model 2004 Márcio José Horta Dantas
José Manoel Balthazar
+ A damped simple pendulum of constant amplitude 1984 Mostafa A. Abdelkader
+ Oscillatory solutions of a model system of nonlinear swing equations 1986 J. C. Alexander
+ On the analysis of periodic linear systems 1996 Antonio Tornambè
+ On the theory of linear differential equations with periodic coefficients and time lag 1963 S.N. Shimanov
+ An equation with a time-periodic damping coefficient: Stability diagram and an application 2002 A. H. P. van der Burgh
+ On a class of periodic motions of a heavy gyrostat with a fixed point 1975 M. P. Tsopa
+ Chaos in a pendulum with forced horizontal support motion: a tutorial 1996 R. Van Dooren
+ Small solutions of the damped half-linear oscillator with step function coefficients 2018 Attila Dénes
László Székely
+ A Mathematical Model of a Discrete Nonlinear Oscillator 2017 Leon Arriola
+ Theory and application of linear periodic differential equations which contain a small parameter 1981 J. Stensby
+ Kicked Mechanical Models and Differential Equations with Periodic Switch 2012 С. П. Кузнецов
+ Periodic Solution for a Modified Leslie-Gower Model with Feedback Control 2015 Zhijian Li
+ Finding Zero: Mathematical Modeling with Pendulum Paintings 2024 Daniel L. McKinney
+ PDF Chat Linear Differential Equations with Periodic Coefficients 1966 T. A. Burton
+ Linear differential equations with periodic coefficients 1975 V. A. Iakubovich
V.M. Starzhinskii

Works That Cite This (1)

Action Title Year Authors
+ Az inga egyensúlyi helyzeteinek stabilizálása és destabilizálása 2018 László Csizmadia