Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
The Three-Dimensional Navier–Stokes Equations
James C. Robinson
,
José L. Rodrigo
,
Witold Sadowski
Type:
Book
Publication Date:
2016-09-05
Citations:
184
DOI:
https://doi.org/10.1017/cbo9781139095143
Share
Similar Works
Action
Title
Year
Authors
+
The Three-Dimensional Navier-Stokes Equations: Classical Theory
2016
James C. Robinson
José L. Rodrigo
Witold Sadowski
+
Advances in the 3D Navier-Stokes Equations
2017
Michael Z. Zgurovsky
Pavlo O. Kasyanov
+
PDF
Chat
The Navier–Stokes regularity problem
2020
James C. Robinson
+
Recent Progress in the Theory of the Euler and Navier–Stokes Equations
2016
James C. Robinson
James C. Robinson
James C. Robinson
H. Beirão da Veiga
Zachary Bradshaw
Giovanni P. Galdi
John Gibbon
W. Hu
Adam Larios
Pierre Gilles Lemarié–Rieusset
+
PDF
Chat
Local Regularity Theory of the Navier–Stokes Equations
2007
G. Serëgin
+
The 3D Navier-Stokes Problem
2008
Charles R. Doering
+
A review of basic theoretical results concerning the Navier-Stokes and other similar equations
2005
Enrique Fernández‐Cara
+
Topics in the regularity theory of the Navier-Stokes equations
2018
Tuan Pham
+
Local Hadamard well-posedness results for the Navier-Stokes equations
2019
Tobias Barker
+
Navier-Stokes Equations and Nonlinear Functional Analysis
1987
Roger Témam
+
Local regularity criteria of the 3D Navier–Stokes and related equations
2016
Yanqing Wang
Gang Wu
+
Partial Regularity for the 3D Navier–Stokes Equations
2020
James C. Robinson
+
PDF
Chat
Navier-Stokes equations with regularity in one direction
2007
Igor Kukavica
Mohammed Ziane
+
On the regularity of weak solutions of the 3D Navier-Stokes equations in $B^{-1}_{\infty,\infty}$
2007
Alexey Cheskidov
Roman Shvydkoy
+
PDF
Chat
On the Existence of Leray-Hopf Weak Solutions to the Navier-Stokes Equations
2021
Luigi C. Berselli
Stefano Spirito
+
On the 3D Navier–Stokes equations with regularity in pressure
2017
Qiao Liu
Guowei Dai
+
PDF
Chat
Sufficient condition of local regularity for the Navier-Stokes equations
2007
Wojciech M. Zajączkowski
G. Serëgin
+
Chapter 3 Global Existence, Uniqueness and Exponential Stability of Solutions for the One-Dimensional Navier–Stokes Equations with Capillarity
2023
+
Chapter 3 Global Existence, Uniqueness and Exponential Stability of Solutions for the One-Dimensional Navier–Stokes Equations with Capillarity
2023
Yuming Qin
Jianlin ZHANG
+
PDF
Chat
Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
2018
Charles Fefferman
James C. Robinson
José L. Rodrigo
Works That Cite This (166)
Action
Title
Year
Authors
+
A New Prodi–Serrin Type Regularity Criterion in Velocity Directions
2018
Benjamin Pineau
Xinwei Yu
+
PDF
Chat
Intermittency, cascades and thin sets in three-dimensional Navier-Stokes turbulence
2020
John Gibbon
+
Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e49" altimg="si2.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>
2021
Jingna Li
Hongxia Liu
Hao Tang
+
PDF
Chat
A correspondence between the multifractal model of turbulence and the Navier–Stokes equations
2022
B. Dubrulle
John Gibbon
+
Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs
2023
André Guerra
Lukas Koch
Sauli Lindberg
+
PDF
Chat
On energy conservation for the hydrostatic Euler equations: an Onsager conjecture
2023
Daniel W. Boutros
Simon Markfelder
Edriss S. Titi
+
PDF
Chat
Local conditional regularity for the Landau equation with Coulomb potential
2022
Immanuel Ben Porat
+
PDF
Chat
Stationary anisotropic Stokes, Oseen and Navier–Stokes systems: Periodic solutions in ℝ <sup> <i>n</i> </sup>
2023
Sergey E. Mikhailov
+
PDF
Chat
On the Rigorous Mathematical Derivation for the Viscous Primitive Equations with Density Stratification
2023
Xueke Pu
Wenli Zhou
+
PDF
Chat
Weak and Strong Solutions of the 3D Navier–Stokes Equations and Their Relation to a Chessboard of Convergent Inverse Length Scales
2018
John Gibbon
Works Cited by This (0)
Action
Title
Year
Authors