Subordination-preserving integral operators

Type: Article

Publication Date: 1984-01-01

Citations: 28

DOI: https://doi.org/10.1090/s0002-9947-1984-0737887-4

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding="application/x-tex">\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="gamma"> <mml:semantics> <mml:mi>γ<!-- γ --></mml:mi> <mml:annotation encoding="application/x-tex">\gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be complex numbers and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the space of functions regular in the unit disc. Subordination of functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g element-of upper H"> <mml:semantics> <mml:mrow> <mml:mi>g</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">g \in H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f precedes g"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>≺<!-- ≺ --></mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f \prec g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K subset-of upper H"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">K \subset H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let the operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A colon upper K right-arrow upper H"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>:</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>H</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A:K \to H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be defined by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F equals upper A left-parenthesis f right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">F = A(f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F left-parenthesis z right-parenthesis equals left-bracket StartFraction 1 Over z Superscript gamma Baseline EndFraction integral Subscript 0 Superscript z Baseline f Superscript beta Baseline left-parenthesis t right-parenthesis t Superscript gamma minus 1 Baseline d t right-bracket Superscript 1 slash beta Baseline period"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow> <mml:mo>[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>z</mml:mi> <mml:mi>γ<!-- γ --></mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:mfrac> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mn>0</mml:mn> <mml:mi>z</mml:mi> </mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>f</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>t</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>γ<!-- γ --></mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>]</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>β<!-- β --></mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">F(z) = {\left [ {\frac {1} {{{z^\gamma }}}\int _0^z {{f^\beta }(t){t^{\gamma - 1}}dt} } \right ]^{1/\beta }}.</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> The authors determine conditions under which <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f precedes g right double arrow upper A left-parenthesis f right-parenthesis precedes upper A left-parenthesis g right-parenthesis comma"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>≺<!-- ≺ --></mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">⇒<!-- ⇒ --></mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≺<!-- ≺ --></mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f \prec g \Rightarrow A(f) \prec A(g),</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> and then use this result to obtain new distortion theorems for some classes of regular functions.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Subordination and 𝐻^{𝑝} functions 1990 Rahman Younis
+ Integral representation without additivity 1986 David Schmeidler
+ PDF Chat Pseudo-integral operators 1979 A. R. Sourour
+ PDF Chat Equivalence of integrals 1973 J. A. Chatfield
+ PDF Chat Support points of subordination families 1988 D. J. Hallenbeck
+ PDF Chat Distortion of sets by inner functions 1993 David Hamilton
+ PDF Chat Characteristic functions of 𝑝-adic integral operators 2022 Pavel Etingof
David Kazhdan
+ PDF Chat Summability integrals 1976 George Brauer
+ PDF Chat Concerning product integrals and exponentials 1970 W. P. Davis
J. A. Chatfield
+ PDF Chat Length functions on integral domains 1991 David F. Anderson
Paula Pruis
+ PDF Chat 𝜆-power integrals on the Cantor type sets 1995 Shushang Fu
+ Zero product preserving maps of operator-valued functions 2003 Wen-Fong Ke
Bing-Ren Li
Ngai Wong
+ Maps preserving numerical ranges of operator products 2005 Jinchuan Hou
Qinghui Di
+ Essential norms of composition operators between Bloch type spaces 2010 Ruhan Zhao
+ PDF Chat A note on extreme points of subordination classes 1988 D. J. Hallenbeck
+ PDF Chat Cauchy integral equalities and applications 1989 Boo Rim Choe
+ Continuity of translation operators 2011 Krishna B. Athreya
Justin R. Peters
+ PDF Chat Functions and integrals 1972 J. Malone
+ PDF Chat 𝐻¹ subordination and extreme points 1985 Yusuf Abu-Muhanna
+ PDF Chat A mapping theorem for logarithmic and integration-by-parts operators 1977 William D. L. Appling