None

Type: Paratext

Publication Date: 2006-03-01

Citations: 3

DOI: https://doi.org/10.1090/tran/2006-358-03

Abstract

We develop a general L 1 -framework for deriving continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations with the aid of the Chen-Perthame kinetic approach.We apply our L 1 -framework to establish an explicit estimate for continuous dependence on the nonlinearities and an optimal error estimate for the vanishing anisotropic viscosity method, without imposition of bounded variation of the approximate solutions.Finally, as an example of a direct application of this framework to numerical methods, we focus on a linear convection-diffusion model equation and derive an L 1 error estimate for an upwind-central finite difference scheme.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ 𝐿¹–framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations 2004 Gui‐Qiang Chen
Kenneth H. Karlsen
+ None 2015
+ None 2000 Mármol
+ None 2000 Alok Dutt
Leslie Greengard
Vladimir Rokhlin
+ L¹-FRAMEWORK FOR CONTINUOUS DEPENDENCE AND ERROR ESTIMATES FOR QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONSL¹-FRAMEWORK FOR CONTINUOUS DEPENDENCE AND ERROR ESTIMATES FOR QUASILINEAR ANISOTROPIC DEGENERATE PARABOLIC EQUATIONS 2003 Gui‐Qiang Chen
Kenneth H. Karlsen
+ A multiscale colloid transport model with anisotropic degenerate diffusion 2003 Mohamed Belhadj
Jean-Frédéric Gerbeau
Benoı̂t Perthame
+ A kinetic approach to error estimate for nonautonomous anisotropic degenerate parabolic-hyperbolic equations 2014 Xingwen Hao
Yachun Li
Qin Wang
+ None 1999 C. González
Alexander Ostermann
+ PDF Chat Preface 2024 Wei Lian
+ Numerical Methods 2014 Christian Kuehn
+ PDF Chat None 2022 Leon Bungert
Yu. M. Korolev
+ None 2014
+ PDF Chat None 2021 Tesfaye Aga Bullo
Gemechis File Duressa
+ Penalty Sponge Layers (Psl) for the Anisotropic Advection-Diffusion Equation 2024 Ahmed Benmeftah
Zohra Benkamra
Nassima Khaldi
Mounir Tlemcani
+ Introduction 2023 Roberto Alicandro
Nadia Ansini
Andrea Braides
Andrey Piatnitski
Antonio Tribuzio
+ PDF Chat Robust Numerical Methods for Nonlocal (and Local) Equations of Porous Medium Type. Part I: Theory 2019 Félix del Teso
Jørgen Endal
Espen R. Jakobsen
+ Sharp 𝐿¹ a posteriori error analysis for nonlinear convection-diffusion problems 2005 Zhiming Chen
Guanghua Ji
+ An error estimate for viscous approximate solutions to degenerate anisotropic convection-diffusion equations 2013 Christian Klingenberg
Ujjwal Koley
+ An introduction to Hybrid High-Order methods 2017 Daniele A. Di Pietro
Roberta Tittarelli
+ PDF Chat Stability-enhanced AP IMEX-LDG schemes for linear kinetic transport equations under a diffusive scaling 2020 Zhichao Peng
Yingda Cheng
Jing‐Mei Qiu
Fengyan Li