On Moduli of Plane Domains

Type: Article

Publication Date: 1977-11-01

Citations: 0

DOI: https://doi.org/10.2307/2041240

Abstract

It is well known that an arbitrary plane domain of finite connectivity can be mapped conformally onto an annulus minus a certain number of circular slits. The parameters defining such a canonical domain are studied in the context of Teichmüller theory. Let $\Omega$ be a plane domain bounded by $m \geqslant 3$ continua. Denote by $T(\Omega )$ the reduced Teichmüller space of $\Omega$ and by $R(\Omega )$ the space of conformal equivalence classes of domains bounded, as $\Omega$ is, by m continua. A real analytic map from $T(\Omega )$ onto an open subset $S(\Omega )$ of a $3m - 6$ dimensional product of circles and lines is constructed. It is shown that the map $T(\Omega ) \to S(\Omega )$ is a regular covering map. Finally, it is observed that there is a finite sheeted covering map $S(\Omega ) \to R(\Omega )$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On approximate conformal mapping of a disk and an annulus with radial and circular slits onto multiply connected domains 2020 Pyotr N. Ivanshin
Elena A. Shirokova
+ PDF Chat Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains 2010 Valentin V. Andreev
Timothy H. McNicholl
+ On conformal maps from lemniscatic domains onto multiply-connected domains 2015 Olivier Sète
Jörg Liesen
+ Moduli of strip-like domains in solving the isoperimetric problem for a conformal mapping 1996 Alexander Vasil’ev
Galina Kamyshova
+ On conformal maps from multiply connected domains onto lemniscatic domains 2015 Olivier Sète
Jörg Liesen
+ PDF Chat On conformal mapping of a multiply-connected domain onto a canonical covering surface 1958 Hisao Mizumoto
+ PDF Chat On conformal slit mapping of multiply-connected domains 1950 Yûsaku Komatu
+ PDF Chat Conformal Modulus of the Exterior of Two Rectilinear Slits 2020 D. Dautova
С. Р. Насыров
Матти Вуоринен
+ Conformal slit maps in applied mathematics 2012 Darren Crowdy
+ On Pseudo-Conformal Mapping among Circular Domains of Different Classes in Several Complex Variables 1975 Sadao Kató
+ Conformal module of the exterior of two rectilinear slits 2019 D. Dautova
С. Р. Насыров
Матти Вуоринен
+ Conformal module of the exterior of two rectilinear slits 2019 D. Dautova
С. Р. Насыров
Матти Вуоринен
+ On Conformal Mapping onto Circular-Radial Slit CoveringSurfaces of Annular and Circular Types 1969 Hisao Mizumoto
+ Constructing a conformal mapping for a complex doubly connected domain 1968 Ekaterina Kolchanova
А. В. Швецов
А. В. Швецов
+ On the conformal modulus in classes of doubly connected domains, not containing given systems of points 1974 Г. В. Кузьмина
+ Conformal Mapping of Circular Multiply Connected Domains Onto Domains with Slits 2017 Roman Czapla
Vladimir Mityushev
+ Conformal Mapping 2001 T. W. Gamelin
+ Application of the covering space in the complex integral of multiply connected domains 2017 HU Guang-ming
Jianren Long
+ Conformal mapping between Rectangles with a crossing slit 2010 Alpha Mamadou Bah
Masaaki Ito
Fumio Maitani
+ On conformal mappings of domains of infinite connectivity 1955 L. J. M. Brown

Works That Cite This (0)

Action Title Year Authors