Report on 2008.05442v1

Type: Peer-Review

Publication Date: 2020-09-11

Citations: 0

DOI: https://doi.org/10.21468/scipost.report.1979

Download PDF

Abstract

While Anderson localisation is largely well-understood, its description has traditionally been rather cumbersome.A recently-developed theory -Localisation Landscape Theory (LLT) -has unparalleled strengths and advantages, both computational and conceptual, over alternative methods.To begin with, we demonstrate that the localisation length cannot be conveniently computed starting directly from the exact eigenstates, thus motivating the need for the LLT approach.Then, we reveal the physical significance of the effective potential of LLT, justifying the crucial role it plays in our new method.We proceed to use LLT to calculate the localisation length, as defined by the length-scale of exponential decay of the eigenstates, (manually) testing our findings against exact diagonalisation.We place our computational scheme in context by explaining the connection to the more general problem of multidimensional tunnelling and discussing the approximations involved.The conceptual approach behind our method is not restricted to a specific dimension or noise type and can be readily extended to other systems.

Locations

  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Report on 2008.05442v1 2020 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase
+ PDF Chat Report on 2008.05442v2 2021 Sophie S. Shamailov
D Brown
Thomas Haase
+ Computing the eigenstate localisation length from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ PDF Chat Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2021 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Computing the eigenstate localisation length at very low energies from Localisation Landscape Theory 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 Sophie S. Shamailov
Dylan Brown
Thomas Haase
M. D. Hoogerland
+ Anderson localisation in two dimensions: insights from Localisation Landscape Theory, exact diagonalisation, and time-dependent simulations 2020 SS Shamailov
D. J. Brown
TA Haase
M. D. Hoogerland
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="script">L</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:math> localization landscape for highly excited states 2020 LoĂŻc Herviou
Jens H. Bardarson
+ The Fock-space landscape of many-body localisation 2024 Sthitadhi Roy
David E. Logan
+ Exact Spectral Statistics in Strongly Localising Circuits 2021 Bruno Bertini
Pavel Kos
TomaĆŸ Prosen
+ An eigensystem approach to Anderson localization 2016 Alexander Elgart
Abel Klein
+ PDF Chat The Fock-space landscape of many-body localisation 2024 Sthitadhi Roy
David E. Logan
+ PDF Chat Localization for a Matrix-valued Anderson Model 2009 Hakim Boumaza
+ PDF Chat Crossover between quantum and classical waves and high-frequency localization landscapes 2022 David Colas
CĂ©dric Bellis
Bruno Lombard
RĂ©gis Cottereau
+ PDF Chat Report on 1903.04851v1 2019 Sthitadhi Roy
David E. Logan
+ PDF Chat Construction of exact constants of motion and effective models for many-body localized systems 2018 M. Goihl
Marek Gluza
Christian Krumnow
Jens Eisert
+ Perturbation theory approaches to Anderson and Many-Body Localization: some lecture notes 2017 Antonello Scardicchio
Thimothée Thiery
+ PDF Chat Dynamics and transport at the threshold of many-body localization 2020 Sarang Gopalakrishnan
S. A. Parameswaran

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (27)

Action Title Year Authors
+ PDF Chat Simulation of Anderson localization in two-dimensional ultracold gases for pointlike disorder 2015 W. Morong
Brian DeMarco
+ PDF Chat Experimental Observation of Two-Dimensional Anderson Localization with the Atomic Kicked Rotor 2015 Isam Manai
Jean‐François ClĂ©ment
Radu Chicireanu
Clément Hainaut
Jean Claude Garreau
Pascal Szriftgiser
Dominique Delande
+ PDF Chat Anderson localization in two-dimensional graphene with short-range disorder: One-parameter scaling and finite-size effects 2014 Zheyong Fan
Andreas Uppstu
Ari Harju
+ PDF Chat Anderson localization of a non-interacting Bose–Einstein condensate 2008 G. Roati
Chiara D’Errico
L. Fallani
M. Fattori
C. Fort
Matteo Zaccanti
Giovanni Carlo Modugno
M. Modugno
M. Inguscio
+ PDF Chat Anisotropic 2D Diffusive Expansion of Ultracold Atoms in a Disordered Potential 2010 Martin Robert-De-Saint-Vincent
Jean-Philippe Brantut
Baptiste Allard
Thomas Plisson
Luca PezzĂš
Laurent Sanchez-Palencia
A. Aspect
Thomas Bourdel
Philippe Bouyer
+ PDF Chat Exponents of the localization length in the 2D Anderson model with off‐diagonal disorder 2004 Andrzej Eilmes
Rudolf A. Römer
+ PDF Chat Anderson localization of electron states in graphene in different types of disorder 2007 Shi‐Jie Xiong
Ye Xiong
+ PDF Chat Anderson localization of matter waves in tailored disordered potentials 2012 Marie Piraud
Alain Aspect
Laurent Sanchez-Palencia
+ PDF Chat Analytical and numerical study of uncorrelated disorder on a honeycomb lattice 2013 Kean Loon Lee
Benoßt Grémaud
Christian Miniatura
Dominique Delande
+ PDF Chat Localization length in Dorokhov s microscopic model of multi-channel wires 2003 J. Heinrichs