List circular coloring of trees and cycles

Type: Article

Publication Date: 2007-02-22

Citations: 7

DOI: https://doi.org/10.1002/jgt.20234

Abstract

Abstract Suppose G =( V , E ) is a graph and p ≥ 2 q are positive integers. A ( p , q )‐coloring of G is a mapping ϕ: V → {0, 1, …, p ‐1} such that for any edge xy of G , q ≤ |ϕ( x )‐ϕ( y )| ≤ p ‐ q . A color‐list is a mapping L : V → $\cal P$ ({0, 1, …, p ‐1}) which assigns to each vertex v a set L ( v ) of permissible colors. An L ‐( p , q )‐coloring of G is a ( p , q )‐coloring ϕ of G such that for each vertex v , ϕ( v ) ∈ L ( v ). We say G is L ‐( p , q )‐colorable if there exists an L ‐( p , q )‐coloring of G . A color‐size‐list is a mapping ℓ which assigns to each vertex v a non‐negative integer ℓ( v ). We say G is ℓ‐( p , q )‐colorable if for every color‐list L with | L ( v )| = ℓ( v ), G is L ‐( p , q )‐colorable. In this article, we consider list circular coloring of trees and cycles. For any tree T and for any p ≥ 2 q , we present a necessary and sufficient condition for T to be ℓ‐( p , q )‐colorable. For each cycle C and for each positive integer k , we present a condition on ℓ which is sufficient for C to be ℓ‐(2 k +1, k )‐colorable, and the condition is sharp. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 249–265, 2007

Locations

  • Journal of Graph Theory - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ PDF Chat Circular choosability of graphs 2005 Xuding Zhu
+ Circular list colorings of some graphs 2006 Guanghui Wang
Guizhen Liu
Jiguo Yu
+ Circular choosability of graphs 2005 Xuding Zhu
+ Circular choosability via combinatorial Nullstellensatz 2008 Serguei Norine
Tsai‐Lien Wong
Xuding Zhu
+ CIRCULAR CONSECUTIVE CHOOSABILITY OF GRAPHS 2008 Wensong Lin
Daqing Yang
Chung-Ying Yang
Xuding Zhu
+ Circular Chromatic Index of Snarks 2007 Ján Mazák
+ Acyclic List Edge Coloring of Graphs 2012 Hsin-Hao Lai
Ko‐Wei Lih
+ Circular game chromatic number of graphs 2009 Wensong Lin
Xuding Zhu
+ PDF Chat Circular coloring of signed graphs 2017 Yingli Kang
Eckhard Steffen
+ Circular coloring of signed graphs 2015 Yingli Kang
Eckhard Steffen
+ PDF Chat LIST COLORING OF BLOCK GRAPHS AND COMPLETE BIPARTITE GRAPHS 2021 Albert Khachik Sahakyan
+ PDF Chat CIRCULAR CONSECUTIVE CHOOSABILITY OF GRAPHS 2008 Wensong Lin
Daqing Yang
Chung-ying Yang
Xuding Zhu
+ Paths, cycles and circular colorings in digraphs 2008 Guanghui Wang
Guizhen Liu
+ PDF Chat On the circular chromatic number of circular partitionable graphs 2006 Arnaud Pêcher
Xuding Zhu
+ The circular chromatic number of a digraph 2004 Drago Bokal
Gašper Fijavž
Martin Juvan
P. Mark Kayll
Bojan Mohar
+ Recent Developments in Circular Colouring of Graphs 2007 Xuding Zhu
+ PDF Chat Circular perfect graphs 2005 Xuding Zhu
+ L(2,1)-labelling of Circular-arc Graph 2014 Satyabrata Paul
Madhumangal Pal
Anita Pal
+ L(2,1)-labelling of Circular-arc Graph 2014 Satyabrata Paul
Madhumangal Pal
Anita Pal
+ PDF Chat A METHOD TO OBTAIN LOWER BOUNDS FOR CIRCULAR CHROMATIC NUMBER 2008 Hong-Gwa Yeh