Special Values of the Lerch Zeta Function and the Evaluation of Certain Integrals

Type: Article

Publication Date: 1993-09-01

Citations: 5

DOI: https://doi.org/10.2307/2159822

Abstract

The Lerch zeta function $\Phi (x,a,s)$ is defined by the series \[ \Phi (x,a,s) = \sum \limits _{n = 0}^\infty {\frac {{{e^{2n\pi ix}}}} {{{{(n + a)}^s}}}} ,\] where $x$ is real, $0 < a \leqslant 1$, and $\sigma = \operatorname {Re} (s) > 1$ if $x$ is an integer and $\sigma > 0$ otherwise. In this paper we study the function $J\left ( {s,a} \right ) = \Phi (\tfrac {1} {2},a,s)$. We use its integral representation \[ J\left ( {s,a} \right ) = \frac {{{a^{ - s}}}} {2} + 2\int _0^\infty {{{({a^2} + {y^2})}^{ - s/2}}\sin \left ( {s {{\tan }^{ - 1}}\frac {y} {a}} \right )} \frac {{{e^{\pi y}}dy}} {{{e^{2\pi y}} - 1}}\] to obtain the values of certain definite integrals; for example, we show that \[ \begin {gathered} \int _0^\infty {\frac {{\cosh x\log x}} {{\cosh 2x - \cos 2\pi a}}} dx \hfill \\ \qquad = \frac {\pi } {{2\sin \pi a}}\left \{ {\log \frac {{\Gamma ((1 + a)/2)}} {{\Gamma (a/2)}} + \frac {1} {2}\log \left ( {2\pi \cot \frac {{\pi a}} {2}} \right )} \right \},\qquad 0 < a < 1. \hfill \\ \end {gathered} \]

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Investigating some integrals involving the Lerch zeta-function 2007 Hisanobu Shinya
+ PDF Chat Special values of the Lerch zeta function and the evaluation of certain integrals 1993 Kenneth S. Williams
Nan Yue Zhang
+ Special values of lerch zeta function and their fourier expansions 2011 Abdelmejid Bayad
+ PDF Chat A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function 2019 Robert Reynolds
A D Stauffer
+ On Lerch's formula and zeros of the quadrilateral zeta function 2020 Takashi Nakamura
+ Special Values and Complex Integral Representation of L-Functions 2014 Tomoyoshi Ibukiyama
Masanobu Kaneko
+ PDF Chat The Lerch zeta function as a fractional derivative 2019 Arran Fernandez
+ PDF Chat The Zeta and Related Functions: Recent Developments 2019 H. M. Srivastava
+ PDF Chat Some Definite Integrals Associated with the Riemann Zeta Function 2000 H. M. Srivastava
M. L. Glasser
Victor Adamchik
+ Values of a Kind of Integrals Concerning Riemann Zeta Function 2001 Wu Yun-Fei
+ Generalizations of the Lerch zeta function. 2014 Hieu T. Ngo
+ The Lerch Zeta-function 2003 Antanas Laurinčikas
Ramūnas Garunkštis
+ PDF Chat Note on the Lerch zeta function 1956 Fritz Oberhettinger
+ PDF Chat A Triple Integral Containing the Lommel Function su,v(z): Derivation and Evaluation 2022 Robert Reynolds
A D Stauffer
+ PDF Chat Derivation of Some Entries in the Tables of David Bierens De Haan and Anatolii Prudnikov: An Exercise in Integration Theory 2021 Robert Reynolds
A D Stauffer
+ Some identities for a special case of Hurwitz-Lerchzeta function 2017 Aykut Ahmet Aygunes
+ Asymptotic expansions for the Laplace-Mellin and Riemann-Liouville transforms of Lerch zeta-functions 2021 Masanori Katsurada
+ Fractional Calculus of the Lerch Zeta Function 2022 Emanuel Guariglia
+ Elementary Properties of the Zeta Function and L-series 1994 Serge Lang
+ HYPERGEOMETRIC SERIES ASSOCIATED WITH THE HURWITZ-LERCH ZETA FUNCTION 2009 Maged G. Bin-Saad