Permanent groups

Type: Article

Publication Date: 1972-01-01

Citations: 5

DOI: https://doi.org/10.1090/s0002-9939-1972-0419474-8

Abstract

A permanent group is a group of nonsingular matrices on which the permanent function is multiplicative. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A ring upper B"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∘<!-- ∘ --></mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A \circ B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the Hadamard product of matrices <italic>A</italic> and <italic>B</italic>. The set of groups <italic>G</italic> of nonsingular <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n times n"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrices which contain the diagonal group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and such that for every pair <italic>A, B</italic> of matrices in <italic>G</italic> we have <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A ring upper B Superscript upper T element-of script upper D"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>∘<!-- ∘ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>B</mml:mi> <mml:mi>T</mml:mi> </mml:msup> </mml:mrow> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">A \circ {B^T} \in \mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {A}_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If the underlying field has at least three elements then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {A}_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> consists of permanent groups. A partial converse is available: If a permanent group <italic>G</italic> is generated by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> together with a set <italic>S</italic> of elementary matrices and a set <italic>Q</italic> of permutation matrices then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G equals upper H upper K"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mo>=</mml:mo> <mml:mi>H</mml:mi> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">G = HK</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <italic>H</italic> is the subgroup generated by <italic>Q</italic> and <italic>K</italic> is generated by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">D</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {D}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <italic>S</italic>, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K element-of script upper A Subscript n"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">K \in {\mathcal {A}_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Permanent Groups 1972 LeRoy B. Beasley
L. L. Cummings
+ PDF Chat Permanent groups. II 1973 LeRoy B. Beasley
Larry J. Cummings
+ PDF Chat Permanent Groups. II 1973 LeRoy B. Beasley
L. L. Cummings
+ PDF Chat Maximal Groups on which the Permanent is Multiplicative: Corrigendum 1970 LeRoy B. Beasley
+ Matrix Groups 1988 M.A. Armstrong
+ PDF Chat Maximal Groups on Which the Permanent is Multiplicative 1969 LeRoy B. Beasley
+ PDF Chat Finitely generated groups (mod 𝑝) 1994 M. Ram Murty
+ PDF Chat The number of 𝑇₂-precompact group topologies on free groups 1985 Dieter Remus
+ PDF Chat The group determinant determines the group 1991 Edward Formanek
David A. Sibley
+ Matrix Groups 2006 Peter J‎. Cameron
+ Matrix Groups 1976 D. A. Suprunenko
+ Matrix Groups 2013 Peter J‎. Cameron
+ Matrix Groups 2005
+ Matrix groups 1968 V. M. Kopytov
+ Matrix Groups 2021 Bijan Davvaz
+ Finitely presented groups of matrices 1976 Ulf Rehmann
Christophe Soulé
+ Matrix groups 2008 Robert Gilmore
+ On the multiplicative monoid of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:math> matrices over <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mi>m</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:… 2007 Yonglin Cao
+ PDF Chat Cyclically presented groups embedded in one-relator products of cyclic groups 1993 C. M. Campbell
Patricia M. Heggie
Edmund F. Robertson
Richard M. Thomas
+ On a matrix group constructed from an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">{</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>k</mml:mi><mml:mo stretchy="false">}</mml:mo></mml:math>-potent matrix 2014 Minerva Catral
Leila Lebtahi
Jeffrey L. Stuart
Néstor Thome