Faster <i>p</i>-norm minimizing flows, via smoothed <i>q</i>-norm problems

Type: Book-Chapter

Publication Date: 2019-12-23

Citations: 10

DOI: https://doi.org/10.1137/1.9781611975994.54

Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA)Faster p-norm minimizing flows, via smoothed q-norm problemsDeeksha Adil and Sushant SachdevaDeeksha Adil and Sushant Sachdevapp.892 - 910Chapter DOI:https://doi.org/10.1137/1.9781611975994.54PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We present faster high-accuracy algorithms for computing ℓp-norm minimizing flows. On a graph with m edges, our algorithm can compute a (1 + 1/poly(m))-approximate unweighted ℓp-norm minimizing flow with operations, for any p ≥ 2, giving the best bound for all p ≳ 5.24. Combined with the algorithm from the work of Adil et al. (SODA '19), we can now compute such flows for any 2 ≤ p ≤ mo(1) in time at most O(m1.24). In comparison, the previous best running time was Ω(m1.33) for large constant p. For p ∼ σ−1 log m, our algorithm computes a (1 + σ)-approximate maximum flow on undirected graphs using m1+o(1)σ−1 operations, matching the current best bound, albeit only for unit-capacity graphs. We also give an algorithm for solving general ℓp-norm regression problems for large p. Our algorithm makes calls to a linear solver. This gives the first high-accuracy algorithm for computing weighted ℓp-norm minimizing flows that runs in time o(m1.5) for some p = mΩ(1). Our key technical contribution is to show that smoothed ℓp-norm problems introduced by Adil et al., are interreducible for different values of p. No such reduction is known for standard ℓp-norm problems. Previous chapter Next chapter RelatedDetails Published:2020eISBN:978-1-61197-599-4 https://doi.org/10.1137/1.9781611975994Book Series Name:ProceedingsBook Code:PRDA20Book Pages:xxii + 3011

Locations

  • arXiv (Cornell University) - View - PDF
  • Society for Industrial and Applied Mathematics eBooks - View

Similar Works

Action Title Year Authors
+ Subgradient estimates for the equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mrow><mml:mi mathvariant="normal">Δ</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:msub><mml:mi>u</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:mi>a</mml:mi><mml:mi>u</mml:mi><mml:mi mathvariant="normal">log</mml:mi><mml:mo>⁡</mml:mo><mml:mi>u</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">+</mml:mo><mml:mi>b… 2025 Biqiang Zhao
+ Gradient Estimates for Δpu + Δqu + a|u|s−1u + b|u|l−1u = 0 on a Complete Riemannian Manifold and Applications 2024 Youde Wang
L xu Zhang
+ Método de direções interiores ao epígrafo para a solução de problemas de otimização não-convexos e não-diferenciáveis via dualidade lagrangeana 2013 Jesús Cernades Gómez
+ PDF Chat A Proximal Bundle Variant with Optimal Iteration-Complexity for a Large Range of Prox Stepsizes 2021 Jiaming Liang
Renato D. C. Monteiro
+ Contributions a l'etude de methodes de centres : convergence globale, perturbations et applications 1994 Ahmed Roubi
+ PDF Chat Enhancing ACPF Analysis: Integrating Newton-Raphson Method with Gradient Descent and Computational Graphs 2024 Masoud Barati
+ On Poljak's improved subgradient method 1988 Seungtaek Kim
Seok‐Joo Koh
+ Methodes proximales entropiques pour la resolution des problemes d'optimisation et d'inegalites variationnelles 2001 Sami Ben Tiba
+ Methode de lagrangiens augmentes en programmation convexe et non convexe. Et applications a la decomposition 1997 Abdelouahed Hamdi
+ Inégalités de Kurdyka-Lojasiewicz et convexité : algorithmes et applications 2017 Trong Phong Nguyen
+ Métodos subgradientes em otimização convexa não diferenciável 2008 Théssera Christine Araújo de Souza
+ A general method of finding the direction of descent in ε-subgradient methods 1995 A. I. Korablev
V. V. Eisman
+ Linear, quadratic, and geometric models 2018 Giuseppe C. Calafiore
Laurent El Ghaoui
+ A smooth penalty function algorithm for network-structured problems 1995 Stavros A. Zenios
Mustafa Ç. Pınar
Ron S. Dembo
+ Linearized alternating directions method for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm inequality constrained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mrow><mml:mi>ℓ</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub></mml:math>-norm minimization 2014 Shuhan Cao
Yunhai Xiao
Hong Zhu
+ Other titles from iSTE in Mathematics and Statistics 2021 Mikhail Moklyachuk
+ Preface for Special Issue in Analysis, its Computation, and Applications: Dedication to Dr. Robert Pertsch Gilbert on the occasion of his 90th birthday 2024 Yongzhi Xu
+ Symmetric matrices 2018 Giuseppe C. Calafiore
Laurent El Ghaoui
+ PDF Chat Optimal sample complexity of subgradient descent for amplitude flow via non-Lipschitz matrix concentration 2021 Paul Hand
Oscar Leong
Vladislav Voroninski
+ Optimization Models 2014 Giuseppe C. Calafiore
Laurent El Ghaoui

Works Cited by This (0)

Action Title Year Authors