Brill-Noether-general limit root bundles: absence of vector-like exotics in F-theory Standard Models

Type: Article

Publication Date: 2022-11-02

Citations: 7

DOI: https://doi.org/10.1007/jhep11(2022)004

Abstract

A bstract Root bundles appear prominently in studies of vector-like spectra of 4d F-theory compactifications. Of particular importance to phenomenology are the Quadrillion F-theory Standard Models (F-theory QSMs). In this work, we analyze a superset of the physical root bundles whose cohomologies encode the vector-like spectra for the matter representations ( 3 , 2 ) 1 / 6 , ( $$ \overline{\textbf{3}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mover> <mml:mn>3</mml:mn> <mml:mo>¯</mml:mo> </mml:mover> </mml:math> , 1 ) − 2 / 3 and ( 1 , 1 ) 1 . For the family B 3 ( $$ {\Delta }_4^{{}^{\circ}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mtext>∆</mml:mtext> <mml:mn>4</mml:mn> <mml:mo>°</mml:mo> </mml:msubsup> </mml:math> ) consisting of $$ \mathcal{O} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>O</mml:mi> </mml:math> (10 11 ) F-theory QSM geometries, we argue that more than 99 . 995% of the roots in this superset have no vector-like exotics. This indicates that absence of vector-like exotics in those representations is a very likely scenario in the $$ \mathcal{O} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>O</mml:mi> </mml:math> (10 11 ) QSM geometries B 3 ( $$ {\Delta }_4^{{}^{\circ}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mtext>∆</mml:mtext> <mml:mn>4</mml:mn> <mml:mo>°</mml:mo> </mml:msubsup> </mml:math> ). The QSM geometries come in families of toric 3-folds B 3 (∆ ° ) obtained from triangulations of certain 3-dimensional polytopes ∆ ° . The matter curves in X Σ ∈ B 3 (∆ ° ) can be deformed to nodal curves which are the same for all spaces in B 3 (∆ ° ). Therefore, one can probe the vector-like spectra on the entire family B 3 (∆ ° ) from studies of a few nodal curves. We compute the cohomologies of all limit roots on these nodal curves. In our applications, for the majority of limit roots the cohomologies are determined by line bundle cohomology on rational tree-like curves. For this, we present a computer algorithm. The remaining limit roots, corresponding to circuit-like graphs, are handled by hand. The cohomologies are independent of the relative position of the nodes, except for a few circuits. On these jumping circuits , line bundle cohomologies can jump if nodes are specially aligned. This mirrors classical Brill-Noether jumps. B 3 ( $$ {\Delta }_4^{{}^{\circ}} $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msubsup> <mml:mtext>∆</mml:mtext> <mml:mn>4</mml:mn> <mml:mo>°</mml:mo> </mml:msubsup> </mml:math> ) admits a jumping circuit, but the root bundle constraints pick the canonical bundle and no jump happens.

Locations

  • Journal of High Energy Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • CERN Document Server (European Organization for Nuclear Research) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • University of Maribor digital library (University of Maribor) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Root bundles: Applications to F-theory Standard Models 2023 Martin Bies
+ PDF Chat Root bundles and towards exact matter spectra of F-theory MSSMs 2021 Martin Bies
Mirjam Cvetič
Ron Donagi
Muyang Liu
Marielle Ong
+ Root Bundles and Towards Exact Matter Spectra of F-theory MSSMs 2021 Martin Bies
Mirjam Cvetič
Ron Donagi
Muyang Liu
Marielle Ong
+ PDF Chat Statistics of limit root bundles relevant for exact matter spectra of F-theory MSSMs 2021 Martin Bies
Mirjam Cvetič
Muyang Liu
+ ℙ[superscript 1] -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models 2015 James Halverson
Washington Taylor
+ Vector-like pairs and Brill–Noether theory 2016 Taizan Watari
+ PDF Chat Towards exotic matter and discrete non-abelian symmetries in F-theory 2018 Mirjam Cvetič
Jonathan J. Heckman
Ling Lin
+ PDF Chat Towards the Standard Model in F-theory 2015 Ling Lin
Timo Weigand
+ F-theory in Eight Dimensions : an Exceptional Field Theory and Heterotic String Perspective 2020 Lilian Chabrol
+ PDF Chat Heterotic-F-theory duality with Wilson line symmetry-breaking 2019 Herbert Clemens
Stuart Raby
+ PDF Chat Abelian F-theory models with charge-3 and charge-4 matter 2018 Nikhil Raghuram
+ PDF Chat A Worldsheet Approach to $\mathbf{\mathcal{N}=1}$ Heterotic Flux Backgrounds 2023 Dan Israël
Yann Proto
+ PDF Chat General F-theory models with tuned $(\operatorname{SU}(3) \times \operatorname{SU}(2) \times \operatorname{U}(1)) / \mathbb{Z}_6$ symmetry 2019 Nikhil Raghuram
Washington Taylor
Andrew P. Turner
+ PDF Chat Quartic gauge couplings from $K3$ geometry 1999 W. Lerche
Stephan Stieberger
Nicholas P. Warner
+ F-theory on tetrahedron 2011 El Hassan Saidi
+ PDF Chat SU(5) × U(1)′ Models with a Vector-like Fermion Family 2021 Athanasios Karozas
G.K. Leontaris
Ilias Tavellaris
+ Non-Perturbative Explorations of Chiral Rings in 4d $\mathcal{N}=2$ SCFTs 2023 Anindya Banerjee
Matthew Buican
+ Terminal singularities, Milnor numbers, and matter in F-theory 2017 Philipp Arras
Antonella Grassi
Timo Weigand
+ PDF Chat ℙ 1 $$ {\mathrm{\mathbb{P}}}^1 $$ -bundle bases and the prevalence of non-Higgsable structure in 4D F-theory models 2015 James Halverson
Washington Taylor
+ PDF Chat $F$-theory over a Fano threefold built from $A_4$-roots 2022 Herbert Clemens
Stuart Raby