Blow-up lemma for cycles in sparse random graphs

Type: Preprint

Publication Date: 2021-11-17

Citations: 0

Abstract

In a recent work, Allen, B\"{o}ttcher, H\`{a}n, Kohayakawa, and Person provided a first general analogue of the blow-up lemma applicable to sparse (pseudo)random graphs thus generalising the classic tool of Koml\'{o}s, S\'{a}rk\"{o}zy, and Szemer\'{e}di. Roughly speaking, they showed that with high probability in the random graph $G_{n,p}$ for $p \geq C(\log n/n)^{1/\Delta}$, sparse regular pairs behave similarly as complete bipartite graphs with respect to embedding a spanning graph $H$ with $\Delta(H) \leq \Delta$. However, this is typically only optimal when $\Delta \in \{2,3\}$ and $H$ either contains a triangle ($\Delta = 2$) or many copies of $K_4$ ($\Delta = 3$). We go beyond this barrier for the first time and present a sparse blow-up lemma for cycles $C_{2k-1}, C_{2k}$, for all $k \geq 2$, and densities $p \geq Cn^{-(k-1)/k}$, which is in a way best possible. As an application of our blow-up lemma we fully resolve a question of Nenadov and \v{S}kori\'{c} regarding resilience of cycle factors in sparse random graphs.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Blow-up lemma for cycles in sparse random graphs 2021 Miloš Trujić
+ Blow-up lemma for cycles in sparse random graphs 2021 Miloš Trujić
+ Blow-up lemmas for sparse graphs 2016 Peter Allen
Julia Böttcher
Hiệp Hàn
Yoshiharu Kohayakawa
Yury Person
+ Local resilience of an almost spanning $k$-cycle in random graphs 2017 Nemanja Škorić
Angelika Steger
Miloš Trujić
+ Covering cycles in sparse graphs 2020 Frank Mousset
Nemanja Škorić
Miloš Trujić
+ Covering cycles in sparse graphs 2020 Frank Mousset
Nemanja Škorić
Miloš Trujić
+ Local resilience of an almost spanning $k$-cycle in random graphs 2017 Nemanja Škorić
Angelika Steger
Miloš Trujić
+ Local resilience for squares of almost spanning cycles in sparse random graphs 2016 Andreas Noever
Angelika Steger
+ Local Resilience for Squares of Almost Spanning Cycles in Sparse Random Graphs 2017 Andreas Noever
Angelika Steger
+ Local resilience for squares of almost spanning cycles in sparse random graphs 2016 Andreas Noever
Angelika Steger
+ The Bandwidth Theorem in Sparse Graphs 2016 Peter Allen
Julia Böttcher
Julia Ehrenmüller
Anusch Taraz
+ The Bandwidth Theorem in Sparse Graphs 2016 Peter J. Allen
Julia Böttcher
Julia Ehrenmüller
Anusch Taraz
+ Finding any given 2-factor in sparse pseudorandom graphs efficiently 2019 Jie Han
Yoshiharu Kohayakawa
Patrick Morris
Yury Person
+ Factors and loose Hamilton cycles in sparse pseudo-random hypergraphs 2020 Hiệp Hàn
Jie Han
Patrick Morris
+ Factors and loose Hamilton cycles in sparse pseudo-random hypergraphs 2020 Hiệp Hàn
Jie Han
Patrick Morris
+ Triangle resilience of the square of a Hamilton cycle in random graphs 2018 Manuela Fischer
Nemanja Škorić
Angelika Steger
Miloš Trujić
+ Triangle resilience of the square of a Hamilton cycle in random graphs. 2018 Manuela Fischer
Nemanja Škorić
Angelika Steger
Miloš Trujić
+ PDF Chat Triangle resilience of the square of a Hamilton cycle in random graphs 2021 Manuela Fischer
Nemanja Škorić
Angelika Steger
Miloš Trujić
+ PDF Chat Factors and loose Hamilton cycles in sparse pseudo-random hypergraphs 2019 Hiệp Hàn
Jie Han
Patrick Morris
+ PDF Chat The Largest Hole in Sparse Random Graphs 2021 Nemanja Draganić
Stefan Glock
Michael Krivelevich

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors