Perfectly packing a square by squares of nearly harmonic sidelength

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2202.03594

Locations

  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Perfectly Packing a Square by Squares of Nearly Harmonic Sidelength 2023 Terence Tao
+ Perfectly packing a square by squares of sidelength $f(n)^{-t}$ 2022 Keiju Sono
+ Perfectly packing a square by squares of sidelength f(n)− 2022 Keiju Sono
+ Perfectly packing a cube by cubes of nearly harmonic sidelength 2022 Rory McClenagan
+ Perfect packing of squares 2022 Antal Joós
+ PDF Packing Unit Squares in a Rectangle 2005 Hiroshi Nagamochi
+ PDF Chat Perfectly packing a cube by cubes of nearly harmonic sidelength 2023 Rory McClenagan
+ Tiling a rectangle with the fewest squares 1994 Richard Kenyon
+ Tiling a rectangle with the fewest squares 1994 RICHARD L. KENYON
+ Optimal Packings of 22 and 33 Unit Squares in a Square 2016 Wolfram Bentz
+ Optimal Packings of 22 and 33 Unit Squares in a Square 2016 Wolfram Bentz
+ When Can You Tile an Integer Rectangle with Integer Squares? 2023 MIT CompGeom Group
Zachary Abel
Hugo A. Akitaya
Erik D. Demaine
Adam Hesterberg
Jayson Lynch
+ Covering of a rectangle by squares 2020 Fedor Ozhegov
+ Covering of a rectangle by squares 2020 Fedor Ozhegov
+ PDF Chat A note on the Erd\H{o}s conjecture about square packing 2024 Junnosuke Koizumi
Takahiro Ueoro
+ Covering a square of side <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mi>ε</mml:mi></mml:math> with unit squares 2005 Alexander Soifer
+ Tightly Packed Squares 2008
+ Efficient Packings of Unit Squares in a Large Square 2019 Fan Chung
Ron Graham
+ Smallest Squared Squares 2013 Lorenz Milla
+ PDF Optimal Packings of 13 and 46 Unit Squares in a Square 2010 Wolfram Bentz

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors