Machine learning and LHC event generation

Type: Article

Publication Date: 2023-04-21

Citations: 69

DOI: https://doi.org/10.21468/scipostphys.14.4.079

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

Locations

  • SciPost Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Radboud Repository (Radboud University) - View - PDF
  • Desy publication database (The Deutsches Elektronen-Synchrotron) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Machine Learning and LHC Event Generation 2022 Anja Butter
Tilman Plehn
S. Schumann
Simon Badger
S. Caron
K. Cranmer
F. A. Di Bello
E. Dreyer
Stefano Forte
Sanmay Ganguly
+ PDF Chat Report on 2203.07460v1 2022 Anja Butter
Tilman Plehn
S. Schumann
Simon Badger
S. Caron
K. Cranmer
Francesco Armando
Di Bello
E. Dreyer
Stefano Forte
+ PDF Chat Machine and deep learning applications in particle physics 2019 D. Bourilkov
+ PDF Chat Modern Machine Learning and Particle Physics 2021 Matthew D. Schwartz
+ Simulation-based inference methods for particle physics 2020 Johann Brehmer
K. Cranmer
+ Simulation-based inference methods for particle physics 2020 Johann Brehmer
K. Cranmer
+ PDF Chat Simulation-Based Inference Methods for Particle Physics 2022 Johann Brehmer
K. Cranmer
+ PDF Chat Simulation-Based Inference Methods for Particle Physics 2022 Johann Brehmer
K. Cranmer
+ Machine Learning Solutions for High Energy Physics: Applications to Electromagnetic Shower Generation, Flavor Tagging, and the Search for di-Higgs Production 2019 M. Paganini
+ Machine Learning Solutions for High Energy Physics: Applications to Electromagnetic Shower Generation, Flavor Tagging, and the Search for di-Higgs Production 2019 M. Paganini
+ A Survey of Machine Learning-Based Physics Event Generation 2021 Yasir Alanazi
N. Sato
P. Ambrozewicz
Astrid Hiller-Blin
Wally Melnitchouk
M. Battaglieri
Tianbo Liu
Yaohang Li
+ Modern Machine Learning for LHC Physicists 2022 Tilman Plehn
Anja Butter
Barry Dillon
Claudius Krause
+ A survey of machine learning-based physics event generation 2021 Yasir Alanazi
N. Sato
P. Ambrozewicz
A. N. Hiller Blin
Wally Melnitchouk
M. Battaglieri
Tianbo Liu
Yaohang Li
+ Reduced Simulations for High-Energy Physics, a Middle Ground for Data-Driven Physics Research 2023 Uraz Odyurt
Stephen Nicholas Swatman
Ana-Lucia Varbanescu
S. Caron
+ Automated detector simulation and reconstruction parametrization using machine learning 2020 B. Trocmé
S. Chekanov
W. H. Hopkins
Y. Li
Jeremy Robert Love
+ PDF Chat Generative Networks for LHC Events 2022 Anja Butter
Tilman Plehn
+ PDF Chat Generative Networks for LHC Events 2022 Anja Butter
Tilman Plehn
+ PDF Chat MadMiner: Machine Learning-Based Inference for Particle Physics 2020 Johann Brehmer
Felix Kling
Irina Espejo
K. Cranmer
+ PDF Chat Reweighting simulated events using machine-learning techniques in the CMS experiment 2024 CMS Collaboration
+ PDF Chat Event generation with Sherpa 2.2 2019 Enrico Bothmann
G. S. Chahal
Stefan Höche
Johannes Krause
Frank Krauss
Silvan Kuttimalai
Sebastian Liebschner
Davide Napoletano
Marek Schönherr
H. Schulz

Works Cited by This (106)

Action Title Year Authors
+ A first unbiased global determination of polarized PDFs and their uncertainties 2014 Emanuele R. Nocera
Richard D. Ball
Stefano Forte
Giovanni Ridolfi
Juan Rojo
+ Automatic differentiation in machine learning: a survey 2015 Atılım Güneş Baydin
Barak A. Pearlmutter
Alexey Radul
Jeffrey Mark Siskind
+ PDF Chat DELPHES 3: a modular framework for fast simulation of a generic collider experiment 2014 J. de Favereau
C. Delaere
P. Demin
A. Giammanco
V. Lemaı̂tre
A. Mertens
M. Selvaggi
+ PDF Chat A first unbiased global NLO determination of parton distributions and their uncertainties 2010 Richard D. Ball
Luigi Del Debbio
Stefano Forte
Alberto Guffanti
José I. Latorre
Juan Rojo
Maria Ubiali
+ PDF Chat Neural network parametrization of deep-inelastic structure functions 2002 Stefano Forte
L. Garrido
José I. Latorre
Andrea Piccione
+ PDF Chat WHIZARD—simulating multi-particle processes at LHC and ILC 2011 Wolfgang Kilian
Thorsten Ohl
Jürgen Reuter
+ PDF Chat The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations 2014 Johan Alwall
Rikkert Frederix
Stefano Frixione
Valentin Hirschi
Fabio Maltoni
Olivier Mattelaer
Hua-Sheng Shao
T. Stelzer
Paolo Torrielli
Marco Zaro
+ An introduction to PYTHIA 8.2 2015 Torbjörn Sjöstrand
Stefan Ask
J. Christiansen
Richard Corke
Nishita Desai
P. Ilten
S. Mrenna
Stefan Prestel
Christine O. Rasmussen
Peter Skands
+ PDF Chat Parton distributions for the LHC run II 2015 Richard D. Ball
Valerio Bertone
Stefano Carrazza
Christopher S. Deans
Luigi Del Debbio
Stefano Forte
Alberto Guffanti
Nathan P. Hartland
José I. Latorre
Juan Rojo
+ What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? 2017 Alex Kendall
Yarin Gal