Traveling waves with continuous profile for hyperbolic Keller-Segel equation

Type: Preprint

Publication Date: 2022-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2204.06920

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Travelling waves with continuous profile for hyperbolic Keller-Segel equation 2024 Quentin Griette
Pierre Magal
Min Zhao
+ PDF Chat Sharp discontinuous traveling waves in a hyperbolic Kellerā€“Segel equation 2021 Xiaoming Fu
Quentin Griette
Pierre Magal
+ Sharp discontinuous traveling waves in a hyperbolic Keller--Segel equation 2020 Xiaoming Fu
Quentin Griette
Pierre Magal
+ PDF Chat Existence and uniqueness of solutions for a hyperbolic Kellerļæ½CSegel equation 2020 Xiaoming Fu
Quentin Griette
Pierre Magal
+ Traveling pulse solutions of a generalized Keller-Segel system with small cell diffusion via a geometric approach 2020 Zengji Du
Jiang Liu
Yulin Ren
+ A cell-cell repulsion model on a hyperbolic Keller-Segel equation 2019 Xiaoming Fu
Quentin Griette
Pierre Magal
+ Singular patterns in Kellerā€“Segel-type models 2023 Juan Campos
Carlos Pulido
J. D. Soler
Mario Veruete
+ Traveling wave solutions for a Keller-Segel system with nonlinear chemical gradient 2024 Shangbing Ai
Zengji Du
+ Traveling waves in a Kellerā€“Segel model with logistic growth 2022 Tong Li
Jeungeun Park
+ Traveling bands for the Keller-Segel model with population growth 2015 Shangbing Ai
Zhiā€An Wang
+ PDF Chat A cellā€“cell repulsion model on a hyperbolic Kellerā€“Segel equation 2020 Xiaoming Fu
Quentin Griette
Pierre Magal
+ Nonlinear Stability of Traveling Waves to a Hyperbolic-Parabolic System Modeling Chemotaxis 2009 Tong Li
Zhiā€An Wang
+ On Patlak-Keller-Segel system for several populations: A gradient flow approach 2019 Debabrata Karmakar
Gershon Wolansky
+ On Patlak-Keller-Segel system for several populations: a gradient flow approach 2019 Debabrata Karmakar
Gershon Wolansky
+ On Patlak-Keller-Segel system for several populations: a gradient flow approach 2019 D. Karmakar
Gershon Wolansky
+ EXISTENCE OF SOLUTIONS FOR HYPERBOLIC SYSTEM AND TRAVELING WAVE SOLUTIONS FOR PARABOLIC SYSTEM OF CHEMOTAXIS MODEL 2005 Hua Chen
+ Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension 2010 Vincent Calvez
Lucilla Corrias
Mohammed Abderrahman Ebde
+ Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension 2010 Vincent Calvez
Lucilla Corrias
Mohammed Abderrahman Ebde
+ PDF Chat Blow-up, concentration phenomenon and global existence for the Keller-Segel model in high dimension 2010 Vincent Calvez
Lucilla Corrias
Mohammed Abderrahman Ebde
+ PDF Chat Mathematical Modeling of Cell Collective Motion Triggered by Self-Generated Gradients 2021 Vincent CƔlvez
Mete Demircigil
Roxana Sublet