Steklov problems for the <i>p</i>−Laplace operator involving <i>L<sup>q</sup> </i>-norm

Type: Article

Publication Date: 2022-04-13

Citations: 0

DOI: https://doi.org/10.2478/mjpaa-2022-0016

Abstract

Abstract In this paper, we are concerned with the study of the spectrum for the nonlinear Steklov problem of the form <m:math xmlns:m="http://www.w3.org/1998/Math/MathML" display="block"> <m:mrow> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mtable columnalign="left"> <m:mtr columnalign="left"> <m:mtd columnalign="left"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant="normal">Δ</m:mi> </m:mrow> <m:mi>p</m:mi> </m:msub> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:msup> <m:mrow> <m:mrow> <m:mrow> <m:mo>|</m:mo> <m:mi>u</m:mi> <m:mo>|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> </m:mtd> <m:mtd columnalign="left"> <m:mrow> <m:mtext>in</m:mtext> <m:mi> </m:mi> <m:mi mathvariant="normal">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr columnalign="left"> <m:mtd columnalign="left"> <m:mrow> <m:msup> <m:mrow> <m:mrow> <m:mrow> <m:mo>|</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo>|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mfrac> <m:mrow> <m:mo>∂</m:mo> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo>∂</m:mo> <m:mi>v</m:mi> </m:mrow> </m:mfrac> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:msubsup> <m:mrow> <m:mrow> <m:mrow> <m:mo>‖</m:mo> <m:mi>u</m:mi> <m:mo>‖</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>,</m:mo> <m:mo>∂</m:mo> <m:mi mathvariant="normal">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msubsup> <m:msup> <m:mrow> <m:mrow> <m:mrow> <m:mo>|</m:mo> <m:mi>u</m:mi> <m:mo>|</m:mo> </m:mrow> </m:mrow> </m:mrow> <m:mrow> <m:mi>q</m:mi> <m:mo>-</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> </m:mrow> </m:mtd> <m:mtd columnalign="left"> <m:mrow> <m:mtext>on</m:mtext> <m:mi> </m:mi> <m:mo>∂</m:mo> <m:mi mathvariant="normal">Ω</m:mi> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mrow> </m:mrow> </m:math> \left\{ {\matrix{{{\Delta _p}u = {{\left| u \right|}^{p - 2}}u} \hfill &amp; {{\rm{in}}\,\Omega ,} \hfill \cr {{{\left| {\nabla u} \right|}^{p - 2}}{{\partial u} \over {\partial v}} = \lambda \left\| u \right\|_{q,\partial \Omega }^{p - q}{{\left| u \right|}^{q - 2}}u} \hfill &amp; {{\rm{on}}\,\partial \Omega ,} \hfill \cr } } \right. where Ω is a smooth bounded domain in ℝ N ( N ≥ 1), λ is a real number which plays the role of eigenvalue and the unknowns u ∈ W 1, p (Ω). Using the Ljusterneck-Shnirelmann theory on C 1 manifold and Sobolev trace embedding we prove the existence of an increasing sequence positive of eigenvalues (λ k ) k ≥1 , for the above problem. We then establish that the first eigenvalue is simple and isolated.

Locations

  • Moroccan Journal of Pure and Applied Analysis - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ Steklov eigenvalue problem with <i>a</i>-harmonic solutions and variable exponents 2020 Belhadj Karim
Abdellah Zerouali
Omar Chakrone
+ Eigenvalues of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>p</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>x</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-Laplacian Steklov problem 2007 Shao-Gao Deng
+ PDF Chat Optimal regularity of stable solutions to nonlinear equations involving the <i>p</i>-Laplacian 2020 Xavier Cabré
Pietro Miraglio
Manel Sanchón
+ Pseudo-differential operators on ℝ<sup> <i>n</i> </sup> 1995 Joseph Wloka
B. Rowley
B. Lawruk
+ On an eigenvalue problem associated with the (<i>p, q</i>) − Laplacian 2024 Luminiţa Barbu
Andreea Burlacu
Gheorghe Moroşanu
+ PDF Chat Remarks on <i>L</i> <sup> <i>p</i> </sup>-limiting absorption principle of Schrödinger operators and applications to spectral multiplier theorems 2017 Shanlin Huang
Xiaohua Yao
Quan Zheng
+ Existence and multiplicity of solutions for fractional Schrödinger-<i>p</i>-Kirchhoff equations in ℝ<sup> <i>N</i> </sup> 2024 Huo Tao
Lin Li
Patrick Winkert
+ Steklov problem with an indefinite weight for the p-Laplacian 2005 Olaf Torné
+ PDF Chat Schrödinger operator methods in the study of a certain nonlinear P.D.E 1983 Evans M. Harrell
Barry Simon
+ The <i>L<sub>p</sub></i>-saturation of linear combinations of Szasz-Mirakjan-Kantorovich operators 2024 Shuli Wang
Linsen Xie
+ <i>p</i>-Harmonic Functions in ℝ<sup> <i>N</i> </sup> <sub>+</sub> with Nonlinear Neumann Boundary Conditions and Measure Data 2019 Natham Aguirre
+ The finite spectrum of Sturm-Liouville problems with <i>n</i> transmission conditions and quadratic eigenparameter-dependent boundary conditions 2021 Li Jia
Xiaoling Hao
Kun Li
Siqin Yao
+ <i>p</i>-Laplacian Equations in ℝ<sup> <i>N</i> </sup> with Finite Potential via the Truncation Method 2016 Xiangqing Liu
Junfang Zhao
+ <i>L<sup>P</sup></i> Estimates of Eigenfunctions 2017 Christopher D. Sogge
+ PDF Chat Boundary triplets and <i>M</i> -functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices 2008 Malcolm Brown
Marco Marletta
Serguei Naboko
Ian Wood
+ Operators in <i>L</i><sup>∞</sup>[0, 1]⊗<i>B</i>(<i>H</i>) 2008 Allan M. Sinclair
Roger R. Smith
+ Existence of solutions for (<i>p</i>(<i>y</i>),<i>q</i>(<i>y</i>))-Laplacian elliptic problem on an exterior domain 2024 Akanksha Kesarwani
Rasmita Kar
+ On the eigenvalue problem for the p-Laplacian operator in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">R</mml:mi><mml:mi>N</mml:mi></mml:msup></mml:math> 2011 Jiaquan Liu
Xiangqing Liu
+ PDF Chat A Weighted Eigenvalue Problems Driven by both <i>p</i>(·)-Harmonic and <i>p</i>(·)-Biharmonic Operators 2020 Mohamed Laghzal
Abdelouahed El Khalil
Abdelfattah Touzani
+ PDF Chat Existence problems for the <i>p</i>-Laplacian 2013 Julian Edward
Steve Hudson
Mark Leckband

Works That Cite This (0)

Action Title Year Authors