A Paradigmatic Approach to Find Equal Sum Partitions of Zero-Divisors via Complete Graphs

Type: Article

Publication Date: 2022-03-29

Citations: 3

DOI: https://doi.org/10.1155/2022/1587689

Abstract

In computer science and mathematics, a partition of a set into two or more disjoint subsets with equal sums is a well-known NP-complete problem. This is a hard problem and referred to as the partition problem or number partitioning. In this paper, we solve a particular type of NP-complete problem on the set of all zero-divisors of <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" id="M1"> <a:msub> <a:mrow> <a:mi>Z</a:mi> </a:mrow> <a:mrow> <a:mi>n</a:mi> </a:mrow> </a:msub> </a:math> including zero, where <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" id="M2"> <c:msub> <c:mrow> <c:mi>Z</c:mi> </c:mrow> <c:mrow> <c:mi>n</c:mi> </c:mrow> </c:msub> </c:math> is the ring of residue classes of a positive integer <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" id="M3"> <e:mi>n</e:mi> </e:math> . In this regard, we introduce and investigate quadratic zero-divisor graph in which we build an edge between zero-divisors <g:math xmlns:g="http://www.w3.org/1998/Math/MathML" id="M4"> <g:msub> <g:mrow> <g:mi>z</g:mi> </g:mrow> <g:mrow> <g:mi>i</g:mi> </g:mrow> </g:msub> </g:math> and <i:math xmlns:i="http://www.w3.org/1998/Math/MathML" id="M5"> <i:msub> <i:mrow> <i:mi>z</i:mi> </i:mrow> <i:mrow> <i:mi>j</i:mi> </i:mrow> </i:msub> </i:math> if and only if <k:math xmlns:k="http://www.w3.org/1998/Math/MathML" id="M6"> <k:msubsup> <k:mrow> <k:mi>z</k:mi> </k:mrow> <k:mrow> <k:mi>i</k:mi> </k:mrow> <k:mrow> <k:mn>2</k:mn> </k:mrow> </k:msubsup> <k:mo>≡</k:mo> <k:msubsup> <k:mrow> <k:mi>z</k:mi> </k:mrow> <k:mrow> <k:mi>j</k:mi> </k:mrow> <k:mrow> <k:mn>2</k:mn> </k:mrow> </k:msubsup> <k:mtext> </k:mtext> <k:mfenced open="(" close=")"> <k:mrow> <k:mi mathvariant="normal">mod</k:mi> <k:mtext> </k:mtext> <k:mi>n</k:mi> </k:mrow> </k:mfenced> <k:mo>,</k:mo> <k:mi>i</k:mi> <k:mo>≠</k:mo> <k:mi>j</k:mi> </k:math> . This is denoted as <p:math xmlns:p="http://www.w3.org/1998/Math/MathML" id="M7"> <p:mover accent="true"> <p:mi>G</p:mi> <p:mo stretchy="true">⏞</p:mo> </p:mover> <p:mfenced open="(" close=")"> <p:mrow> <p:mn>2</p:mn> <p:mo>,</p:mo> <p:mi>n</p:mi> </p:mrow> </p:mfenced> </p:math> . We characterize these graphs in term of complete graphs for classes of integers <v:math xmlns:v="http://www.w3.org/1998/Math/MathML" id="M8"> <v:msup> <v:mrow> <v:mn>2</v:mn> </v:mrow> <v:mrow> <v:mi>α</v:mi> </v:mrow> </v:msup> <v:mo>,</v:mo> <v:msup> <v:mrow> <v:mi>p</v:mi> </v:mrow> <v:mrow> <v:mi>α</v:mi> </v:mrow> </v:msup> <v:mo>,</v:mo> <v:msup> <v:mrow> <v:mn>2</v:mn> </v:mrow> <v:mrow> <v:mi>α</v:mi> </v:mrow> </v:msup> <v:mi>p</v:mi> <v:mo>,</v:mo> <v:mn>2</v:mn> <v:msup> <v:mrow> <v:mi>p</v:mi> </v:mrow> <v:mrow> <v:mi>α</v:mi> </v:mrow> </v:msup> </v:math> and <x:math xmlns:x="http://www.w3.org/1998/Math/MathML" id="M9"> <x:mi>p</x:mi> <x:mi>q</x:mi> </x:math> , where <z:math xmlns:z="http://www.w3.org/1998/Math/MathML" id="M10"> <z:mi>α</z:mi> </z:math> is any positive integer and <bb:math xmlns:bb="http://www.w3.org/1998/Math/MathML" id="M11"> <bb:mi>p</bb:mi> <bb:mo>,</bb:mo> <bb:mi>q</bb:mi> </bb:math> are odd primes.

Locations

  • Journal of Chemistry - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ A novel approach to find partitions of $ Z_{m} $ with equal sum subsets via complete graphs 2021 Muhammad Haris Mateen
Muhammad Khalid Mahmmod
Doha A. Kattan
Shahbaz Ali
+ PDF Chat Retracted: A Paradigmatic Approach to Find Equal Sum Partitions of Zero-Divisors via Complete Graphs 2023 Journal of Chemistry
+ PDF Chat Zero-sum partition theorems for graphs 1993 Yair Caro
Ilia Krasikov
Y. Roditty
+ PDF Chat Counting certain quadratic partitions of zero modulo a prime number 2021 Wang Xiao
Aihua Li
+ A new approach to the zero-divisor graphs 2011 Ehsan Estaji
Mozhgan Afkhami Goli
Mahdi Reza Khorsandi
Kazem Khashyarmanesh
+ PDF Chat Topological Indices of Total Graph and Zero Divisor Graph of Commutative Ring: A Polynomial Approach 2023 Sourav Mondal
Muhammad Imran
Nilanjan De
Anita Pal
+ Zero-Divisor Graphs of $\mathbb{Z}_n$, their products and $D_n$ 2020 Amrita Acharyya
Robinson Czajkowski
+ Zero-Divisor Graphs of ℤ_n, their products and D_n 2023 Amrita Acharyya
Robinson Czajkowski
+ PDF Chat Comments on the Clique Number of Zero-Divisor Graphs of <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <msub> <mrow> <mi>Z</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </math> 2022 Yanzhao Tian
Lixiang Li
+ Decomposition of zero divisor graph into cycles and stars 2022 A. Kuppan
J. Ravi Sankar
+ PDF Chat On Join Graph Of Zero-Divisor Graphs Of Direct Product Of Finite Fields 2023 Subhash Mallinath Gaded
Nithya Sai Narayana
+ PDF Chat Prime Decomposition of Zero Divisor Graph in a Commutative Ring 2022 A. Kuppan
J. Ravi Sankar
+ Unification of zero-sum problems, subset sums and covers of ℤ 2003 Zhi‐Wei Sun
+ Combinatorial Approach to Structural indices of Zero-Divisor Graphs 2025 Gahininath Sonawane
Ganesh S. Kadu
Y. M. Borse
+ SIFAT-SIFAT GRAF PEMBAGI NOL PADA GELANGGANG POLINOM KUOSIEN (Z_p [x])/〈x^(n+1) 〉 ×(Z_q [x])/〈x^(n+1) 〉 2020 Dais Alifian Fatahillah
Ni Wayan Switrayni
+ DECOMPOSITION OF ZERO DIVISOR GRAPH IN A COMMUTATIVE RING 2020 A. Kuppan
J. Ravi Sankar
+ Total Zero-Divisor Graph of A Field 2020 Raja Nandhini
G Akshaya.
M Kayalvizhi.
+ PDF Chat The total zero-divisor graph of a commutative ring 2018 Alen Ðurić
Sara Jevđenić
Polona Oblak
Nik Stopar
+ A Brief Study on domination number of a non-zero zero divisor graph formed from the Cartesian product of two star zero divisor graphs 2018 L. Jethruth Emelda Mary
Dr.Ameenal Bibi
+ PDF Chat Analysis of Distance-Based Topological Polynomials Associated with Zero-Divisor Graphs 2021 Ali Hasan Ahmad
Roslan Hasni
Nahid Akhter
Kashif Elahi