A Space-Time Trefftz Discontinuous Galerkin Method for the Linear Schrödinger Equation

Type: Article

Publication Date: 2022-03-31

Citations: 6

DOI: https://doi.org/10.1137/21m1426079

Abstract

A space-time Trefftz discontinuous Galerkin method for the Schrödinger equation with piecewise-constant potential is proposed and analyzed. Following the spirit of Trefftz methods, trial and test spaces are spanned by nonpolynomial complex wave functions that satisfy the Schrödinger equation locally on each element of the space-time mesh. This allows for a significant reduction in the number of degrees of freedom in comparison with full polynomial spaces. We prove well-posedness and stability of the method and, for the one- and two-dimensional cases, optimal, high-order, $h$-convergence error estimates in a skeleton norm. Some numerical experiments validate the theoretical results presented.

Locations

  • SIAM Journal on Numerical Analysis - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ A space-time Trefftz discontinuous Galerkin method for the linear Schrödinger equation. 2021 Sergio Gómez
Andrea Moiola
+ PDF Chat A space-time Trefftz discontinuous Galerkin method for the linear Schr\"odinger equation 2021 Sergio Gómez
Andrea Moiola
+ A space-time DG method for the Schrödinger equation with variable potential 2023 Sergio Gómez
Andrea Moiola
+ On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation 2023 Sergio Gómez
Andrea Moiola
Ilaria Perugia
Paul Stocker
+ On polynomial Trefftz spaces for the linear time-dependent Schrödinger equation 2023 Sergio Gómez
Andrea Moiola
Ilaria Perugia
Paul Stocker
+ PDF Chat A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method 1998 Ohannes A. Karakashian
Charalambos Makridakis
+ A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems 2015 Fritz Kretzschmar
Andrea Moiola
Ilaria Perugia
Sascha Schnepp
+ PDF Chat A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell's Equations 2015 Herbert Egger
Fritz Kretzschmar
Sascha Schnepp
Thomas Weiland
+ A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equations 2014 Herbert Egger
Fritz Kretzschmar
Sascha Schnepp
Thomas Weiland
+ A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equations 2014 Herbert Egger
Fritz Kretzschmar
Sascha Schnepp
Thomas Weiland
+ PDF Chat <i>A priori</i>error analysis of space–time Trefftz discontinuous Galerkin methods for wave problems 2015 Fritz Kretzschmar
Andrea Moiola
Ilaria Perugia
Sascha Schnepp
+ PDF Chat Discontinuous Galerkin methods with Trefftz approximations 2014 Fritz Kretzschmar
Sascha Schnepp
Igor Tsukerman
Thomas Weiland
+ A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation 2016 Andrea Moiola
Ilaria Perugia
+ Discrete-time orthogonal spline collocation methods for Schrodinger-type problems 1998 Bingkun Li
+ Trefftz-discontinuous Galerkin methods for time-harmonic wave problems 2011 Andrea Moiola
+ Trefftz discontinuous Galerkin methods on unstructured meshes for the wave equation 2015 Andrea Moiola
+ An Energy-Based Discontinuous Galerkin Method for the Nonlinear Schrödinger Equation with Wave Operator 2024 Kui Ren
Lu Zhang
Yin Zhou
+ A Fourier spectral-discontinuous Galerkin method for time-dependent 3-D Schrödinger–Poisson equations with discontinuous potentials 2008 Tiao Lu
Wei Cai
+ A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation 2016 Lehel Banjai
Emmanuil H. Georgoulis
Oluwaseun Lijoka
+ A Trefftz polynomial space-time discontinuous Galerkin method for the second order wave equation 2016 Lehel Banjai
Emmanuil H. Georgoulis
Oluwaseun Lijoka

Works Cited by This (14)

Action Title Year Authors
+ PDF Chat Transparent boundary conditions for a discontinuous Galerkin Trefftz method 2015 Herbert Egger
Fritz Kretzschmar
Sascha Schnepp
Igor Tsukerman
Thomas Weiland
+ Function Spaces and Potential Theory 1996 David R. Adams
Lars Inge Hedberg
+ PDF Chat A Space-Time Discontinuous Galerkin Trefftz Method for Time Dependent Maxwell's Equations 2015 Herbert Egger
Fritz Kretzschmar
Sascha Schnepp
Thomas Weiland
+ On Polynomial Approximation in Sobolev Spaces 1983 Ricardo G. Durán
+ Numerical schemes for the simulation of the two-dimensional Schrödinger equation using non-reflecting boundary conditions 2004 Xavier Antoine
Christophe Besse
Vincent Mouysset
+ PDF Chat Plane wave discontinuous Galerkin methods: Analysis of the<i>h</i>-version 2009 Claude Jeffrey Gittelson
Ralf Hiptmair
Ilaria Perugia
+ PDF Chat A Trefftz Polynomial Space-Time Discontinuous Galerkin Method for the Second Order Wave Equation 2017 Lehel Banjai
Emmanuil H. Georgoulis
Oluwaseun Lijoka
+ PDF Chat A space–time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation 2017 Andrea Moiola
Ilaria Perugia
+ Tent pitching and Trefftz-DG method for the acoustic wave equation 2020 Ilaria Perugia
Joachim Schöberl
Paul Stocker
Christoph M. Wintersteiger
+ PDF Chat Space–time discontinuous Galerkin approximation of acoustic waves with point singularities 2020 Pratyuksh Bansal
Andrea Moiola
Ilaria Perugia
Christoph Schwab