Labels4Free: Unsupervised Segmentation using StyleGAN

Type: Article

Publication Date: 2021-10-01

Citations: 52

DOI: https://doi.org/10.1109/iccv48922.2021.01371

Abstract

We propose an unsupervised segmentation framework for StyleGAN generated objects. We build on two main observations. First, the features generated by StyleGAN hold valuable information that can be utilized towards training segmentation networks. Second, the foreground and background can often be treated to be largely independent and be swapped across images to produce plausible composited images. For our solution, we propose to augment the StyleGAN2 generator architecture with a segmentation branch and to split the generator into a foreground and background network. This enables us to generate soft segmentation masks for the foreground object in an unsupervised fashion. On multiple object classes, we report comparable results against state-of-the-art supervised segmentation networks, while against the best unsupervised segmentation approach we demonstrate a clear improvement, both in qualitative and quantitative metricsProject Page : https:/rameenabdal.github.io/Labels4Free

Locations

  • UCL Discovery (University College London) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • 2021 IEEE/CVF International Conference on Computer Vision (ICCV) - View

Similar Works

Action Title Year Authors
+ Labels4Free: Unsupervised Segmentation using StyleGAN 2021 Rameen Abdal
Peihao Zhu
Niloy J. Mitra
Peter Wonka
+ Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP 2021 Daniil Pakhomov
Sanchit Hira
Narayani Wagle
Kemar E. Green
Nassir Navab
+ Finding an Unsupervised Image Segmenter in Each of Your Deep Generative Models 2021 Luke Melas-Kyriazi
Christian Rupprecht
Iro Laina
Andrea Vedaldi
+ Object Segmentation Without Labels with Large-Scale Generative Models 2020 Andrey Voynov
Stanislav Morozov
Artem Babenko
+ PDF Chat SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network for Object Segmentation 2023 Kunal Chaturvedi
Ali Braytee
Jun Li
Mukesh Prasad
+ SS-CPGAN: Self-Supervised Cut-and-Pasting Generative Adversarial Network for Object Segmentation 2023 Kunal Chaturvedi
Ali Braytee
Jun Li
Mukesh Prasad
+ Unsupervised Foreground-Background Segmentation with Equivariant Layered GANs. 2021 Yu Yang
Hakan Bilen
Qiran Zou
Wing Yin Cheung
Xiangyang Ji
+ Learning Foreground-Background Segmentation from Improved Layered GANs 2021 Yu Yang
Hakan Bilen
Qiran Zou
Wing Yin Cheung
Xiangyang Ji
+ Self-Supervised One-Shot Learning for Automatic Segmentation of StyleGAN Images 2023 Ankit Manerikar
Avinash C. Kak
+ Big GANs Are Watching You: Towards Unsupervised Object Segmentation with Off-the-Shelf Generative Models 2021 Andrey Voynov
Stanislav Morozov
Artem Babenko
+ PDF Chat ILSGAN: Independent Layer Synthesis for Unsupervised Foreground-Background Segmentation 2023 Qiran Zou
Yu Yang
Wing Yin Cheung
Chang Liu
Xiangyang Ji
+ Revisiting CycleGAN for semi-supervised segmentation 2019 Arnab Kumar Mondal
Aniket Agarwal
José Dolz
Christian Desrosiers
+ PDF Chat Learning Segmentation Masks with the Independence Prior 2019 Songmin Dai
Xiaoqiang Li
Lu Wang
Pin Wu
Weiqin Tong
Yimin Chen
+ PDF Chat OneGAN: Simultaneous Unsupervised Learning of Conditional Image Generation, Foreground Segmentation, and Fine-Grained Clustering 2020 Yaniv Benny
Lior Wolf
+ Unsupervised Object Segmentation by Redrawing 2019 Mickaël Chen
Thierry Artières
Ludovic Denoyer
+ Semi and Weakly Supervised Semantic Segmentation Using Generative Adversarial Network 2017 Nasim Souly
Concetto Spampinato
Mubarak Shah
+ Visual Boundary Knowledge Translation for Foreground Segmentation 2021 Zunlei Feng
Lechao Cheng
Xinchao Wang
Xiang Wang
Yajie Liu
Xiangtong Du
Mingli Song
+ PDF Chat Visual Boundary Knowledge Translation for Foreground Segmentation 2021 Zunlei Feng
Lechao Cheng
Xinchao Wang
Xiang Wang
Ya Jie Liu
Xiangtong Du
Mingli Song
+ Learning to Annotate Part Segmentation with Gradient Matching 2022 Yu Yang
Xiaotian Cheng
Hakan Bilen
Xiangyang Ji
+ Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalization 2021 Daiqing Li
Junlin Yang
Karsten Kreis
Antonio Torralba
Sanja Fidler