Report on 2010.03875v2

Type: Peer-Review

Publication Date: 2021-01-26

Citations: 0

DOI: https://doi.org/10.21468/scipost.report.2468

Download PDF

Abstract

We investigate the supervised machine learning of few interacting bosons in optical speckle disorder via artificial neural networks.The learning curve shows an approximately universal power-law scaling for different particle numbers and for different interaction strengths.We introduce a network architecture that can be trained and tested on heterogeneous datasets including different particle numbers.This network provides accurate predictions for all system sizes included in the training set and, by design, is suitable to attempt extrapolations to (computationally challenging) larger sizes.Notably, a novel transfer-learning strategy is implemented, whereby the learning of the larger systems is substantially accelerated and made consistently accurate by including in the training set many small-size instances.

Locations

  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Report on 2010.03875v2 2021 Pere Mujal
A. Miguel
A. Polls
Bruno Juliá-Díaz
Sebastiano Pilati
+ PDF Chat Report on 2010.03875v1 2020 Pere Mujal
A. Miguel
A. Polls
Bruno Juliá-Díaz
Sebastiano Pilati
+ PDF Chat Report on 2010.03875v1 2020 Pere Mujal
A. Miguel
A. Polls
Bruno Juliá-Díaz
Sebastiano Pilati
+ PDF Chat Supervised learning of few dirty bosons with variable particle number 2021 Pere Mujal
Àlex Martínez Miguel
A. Polls
Bruno Juliá-Díaz
Sebastiano Pilati
+ PDF Chat Supervised machine learning of ultracold atoms with speckle disorder 2019 Sebastiano Pilati
P. Pieri
+ PDF Chat Scalable neural networks for the efficient learning of disordered quantum systems 2020 N. Saraceni
Simone Cantori
Sebastiano Pilati
+ PDF Chat Delta-Learning approach combined with the cluster Gutzwiller approximation for strongly correlated bosonic systems 2024 Zhi Lin
Tong Wang
Sheng Yue
+ PDF Chat Learning interactions between Rydberg atoms 2024 Olivier Simard
Anna Dawid
Joseph Tindall
Michel Ferrero
Anirvan M. Sengupta
Antoine Georges
+ PDF Chat Combining machine learning with physics: A framework for tracking and sorting multiple dark solitons 2022 Shangjie Guo
Sophia M. Koh
A. R. Fritsch
I. B. Spielman
Justyna P. Zwolak
+ Combining Machine Learning with Physics: A Framework for Tracking and Sorting Multiple Dark Solitons 2021 Shangjie Guo
Sophia M. Koh
A. R. Fritsch
I. B. Spielman
Justyna P. Zwolak
+ PDF Chat Neural network setups for a precise detection of the many-body localization transition: Finite-size scaling and limitations 2019 Hugo Théveniaut
Fabien Alet
+ PDF Chat Interpreting machine learning functions as physical observables 2022 Gert Aarts
Dimitrios Bachtis
Biagio Lucini
+ Supervised learning of an interacting 2D hard-core boson model of a weak topological insulator using correlation functions 2023 Amrita Ghosh
M. Sarkar
+ PDF Chat Spectral Independence in High-Dimensional Expanders and Applications to the Hardcore Model 2021 Nima Anari
Kuikui Liu
Shayan Oveis Gharan
+ Interpreting machine learning functions as physical observables 2021 Gert Aarts
Dimitrios Bachtis
Biagio Lucini
+ Supervised Training of Neural-Network Quantum States for the Next Nearest Neighbor Ising model 2023 Zheyu Wu
Remmy Zen
Heitor P. Casagrande
Stéphane Bressan
Dario Poletti
+ Unsupervised learning of correlated quantum dynamics on disordered lattices 2021 Miri Kenig
Yoav Lahini
+ PDF Chat Report on 2306.12283v2 2024 Jofre Vallès-Muns
Ivan Morera
G. E. Astrakharchik
Bruno Juliá-Díaz
+ A novel computational approach towards the certification of large-scale boson sampling 2016 Joonsuk Huh
+ PDF Chat Dynamics of Supervised Learning with Restricted Training Sets 1999 A C C Coolen
David Saad

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (29)

Action Title Year Authors
+ Very Deep Convolutional Networks for Large-Scale Image Recognition 2014 Karen Simonyan
Andrew Zisserman
+ PDF Chat Anderson localization of a non-interacting Bose–Einstein condensate 2008 G. Roati
Chiara D’Errico
L. Fallani
M. Fattori
C. Fort
Matteo Zaccanti
Giovanni Carlo Modugno
M. Modugno
M. Inguscio
+ PDF Chat Deterministic Preparation of a Tunable Few-Fermion System 2011 Friedhelm Serwane
G. Zürn
Thomas Lompe
T. B. Ottenstein
A. N. Wenz
Selim Jochim
+ PDF Chat From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time 2013 A. N. Wenz
G. Zürn
Simon Murmann
Ioannis Brouzos
Thomas Lompe
Selim Jochim
+ PDF Chat Weakly interacting Bose gas in a random environment 2009 G. M. Falco
T. Nattermann
V. L. Pokrovsky
+ PDF Chat Collective dynamics and expansion of a Bose-Einstein condensate in a random potential 2006 M. Modugno
+ PDF Chat Ultracold Bose Gases in 1D Disorder: From Lifshits Glass to Bose-Einstein Condensate 2007 Pierre Lugan
David Clément
Philippe Bouyer
Alain Aspect
Maciej Lewenstein
Laurent Sanchez-Palencia
+ PDF Chat Finding Density Functionals with Machine Learning 2012 John Snyder
Matthias Rupp
Katja Hansen
Klaus‐Robert Müller
Kieron Burke
+ PDF Chat How to represent crystal structures for machine learning: Towards fast prediction of electronic properties 2014 Kristof T. Schütt
Henning Glawe
Felix Brockherde
Antonio Sanna
K. Müller
E. K. U. Gross
+ PDF Chat Direct observation of Anderson localization of matter waves in a controlled disorder 2008 Juliette Billy
Vincent Josse
Zhanchun Zuo
Alain Bernard
Ben Hambrecht
Pierre Lugan
David Clément
Laurent Sanchez-Palencia
Philippe Bouyer
Alain Aspect