Higher genera for proper actions of Lie groups, II: The case of manifolds with boundary

Type: Article

Publication Date: 2021-12-31

Citations: 1

DOI: https://doi.org/10.2140/akt.2021.6.713

Abstract

Let G be a finitely connected Lie group and let K be a maximal compact subgroup. Let M be a cocompact G-proper manifold with boundary, endowed with a G-invariant metric which is of product type near the boundary. Under additional assumptions on G, for example that it satisfies the Rapid Decay condition and is such that G/K has nonpositive sectional curvature, we define higher Atiyah-Patodi-Singer C^*-indices associated to smooth group cocycles on G and to a generalized G-equivariant Dirac operator D on M with L^2-invertible boundary operator D_\partial. We then establish a higher index formula for these C^*-indices and use it in order to introduce higher genera for M, thus generalizing to manifolds with boundary the results that we have established in Part 1. Our results apply in particular to a semisimple Lie group G. We use crucially the pairing between suitable relative cyclic cohomology groups and relative K-theory groups.

Locations

  • Annals of K-Theory - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Higher genera for proper actions of Lie groups, Part 2: the case of manifolds with boundary 2020 Paolo Piazza
Hessel Posthuma
+ PDF Chat Higher genera for proper actions of Lie groups 2019 Paolo Piazza
Hessel Posthuma
+ Etale Groupoids, eta invariants and index theory 2003 Ɖric Leichtnam
Paolo Piazza
+ Higher $\widehat{A}$-genera for proper actions and applications 2021 Hao Guo
Varghese Mathai
+ EĢtale groupoids, eta invariants and index theory 2005 Walter de Gruyter
+ PDF Chat ā„“Ā¹-higher index, ā„“Ā¹-higher rho invariant and cyclic cohomology 2023 Jinmin Wang
Zhizhang Xie
Guoliang Yu
+ An equivariant Atiyah-Patodi-Singer index theorem for proper actions II: the $K$-theoretic index 2020 Peter Hochs
Baiā€Ling Wang
Hang Wang
+ An equivariant Atiyah-Patodi-Singer index theorem for proper actions 2019 Peter Hochs
Baiā€Ling Wang
Hang Wang
+ $l^1$-higher index, $l^1$-higher rho invariant and cyclic cohomology 2022 Jinmin Wang
Zhizhang Xie
Guoliang Yu
+ Higher localised $\hat{A}$-genera for proper actions and applications 2021 Hao Guo
Varghese Mathai
+ Higher localised $\widehat{A}$-genera for proper actions and applications 2021 Hao Guo
Varghese Mathai
+ An equivariant Atiyah-Patodi-Singer index theorem for proper actions I: the index formula 2019 Peter Hochs
Baiā€Ling Wang
Hang Wang
+ PDF Chat An Equivariant Atiyahā€“Patodiā€“Singer Index Theorem for Proper Actions I: The Index Formula 2021 Peter Hochs
Baiā€Ling Wang
Hang Wang
+ PDF Chat An equivariant Atiyahā€“Patodiā€“Singer index theorem for proper actions II: the K-theoretic index 2022 Peter Hochs
Baiā€Ling Wang
Hang Wang
+ PDF Chat Ɖtale groupoids, eta invariants and index theory 2005 Ɖric Leichtnam
Paolo Piazza
+ Higher orbital integrals, rho numbers and index theory 2021 Paolo Piazza
Hessel Posthuma
Yanli Song
Xiang Tang
+ Index theory of equivariant Dirac operators on non-compact manifolds 2000 Maxim Braverman
+ PDF Chat Higher localised <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mover accent="true"><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mo>Ė†</mml:mo></mml:mrow></mml:mover></mml:math>-genera for proper actions and applications 2022 Hao Guo
Varghese Mathai
+ On an Index Theorem of Chang, Weinberger and Yu 2018 Thomas Schick
Mehran Seyedhosseini
+ Index theorem for equivariant Dirac operators on non-compact manifolds 2000 Maxim Braverman