Nonsmooth calculus

Type: Article

Publication Date: 2007-01-24

Citations: 69

DOI: https://doi.org/10.1090/s0273-0979-07-01140-8

Abstract

We survey recent advances in analysis and geometry, where first order differential analysis has been extended beyond its classical smooth settings. Such studies have applications to geometric rigidity questions, but are also of intrinsic interest. The transition from smooth spaces to singular spaces where calculus is possible parallels the classical development from smooth functions to functions with weak or generalized derivatives. Moreover, there is a new way of looking at the classical geometric theory of Sobolev functions that is useful in more general contexts.

Locations

  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Smooth and Nonsmooth Calculus 2022 Shouchuan Hu
Νικόλαος Παπαγεωργίου
+ Lectures on Nonsmooth Differential Geometry 2020 Nicola Gigli
Enrico Pasqualetto
+ Smooth and Nonsmooth Calculus 2016 Leszek Gasiński
Νικόλαος Παπαγεωργίου
+ Smoothness of Nonsmooth Functions 1989 V. F. Demyanov
+ Nonsmooth Calculus of Semismooth Functions and Maps 2013 N. Movahedian
+ Nonsmooth Analysis 2010 Richard Vinter
+ The Classical Theory 2017 A. D. Ioffe
+ PDF Chat Calculus of Variations 2013 Camillo De Lellis
Gerhard Huisken
Robert L. Jerrard
+ Nonsmooth Analysis 2023 Piernicola Bettiol
Richard Vinter
+ Nonsmooth Analysis 2013 Dumitru Motreanu
V. V. Motreanu
Nikolaos S. Papageorgiou
+ PDF Chat Smoothing the Nonsmoothness 2024 Chaohua Dong
Jiti Gao
Bin Peng
Yundong Tu
+ Functional Analysis, Sobolev Spaces, and Calculus of Variations 2024 Pablo Pedregal
+ An Introduction to Nonsmooth Analysis 2013 Juan Ferrera
+ Regularity Concepts in Nonsmooth Analysis 2011 Messaoud Bounkhel
+ Nonsmooth differential calculus 2010 S. N. Samborskii
+ Nonsmoothness and a Variable Metric Method 2014 Adrian S. Lewis
S. Zhang
+ PDF Chat Functional calculus and harmonic analysis in geometry 2019 Lashi Bandara
+ Quasiconvexity and partial regularity in the calculus of variations 1986 L. C. Evans
+ Softness, sleekness and regularity properties in nonsmooth analysis 2007 Jean‐Paul Penot
+ Smooth measures 1991 Yu. L. Dalecky
V. R. Steblovskaya