Stabilizer rank and higher-order Fourier analysis

Type: Article

Publication Date: 2022-02-09

Citations: 6

DOI: https://doi.org/10.22331/q-2022-02-09-645

Abstract

We establish a link between stabilizer states, stabilizer rank, and higher-order Fourier analysis – a still-developing area of mathematics that grew out of Gowers's celebrated Fourier-analytic proof of Szemerédi's theorem \cite{gowers1998new}. We observe that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-qudit stabilizer states are so-called nonclassical quadratic phase functions (defined on affine subspaces of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msubsup><mml:mrow class="MJX-TeXAtom-ORD"><mml:mi mathvariant="double-struck">F</mml:mi></mml:mrow><mml:mi>p</mml:mi><mml:mi>n</mml:mi></mml:msubsup></mml:math> where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> is the dimension of the qudit) which are fundamental objects in higher-order Fourier analysis. This allows us to import tools from this theory to analyze the stabilizer rank of quantum states. Quite recently, in \cite{peleg2021lower} it was shown that the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-qubit magic state has stabilizer rank <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">&amp;#x03A9;</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>. Here we show that the qudit analog of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi></mml:math>-qubit magic state has stabilizer rank <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">&amp;#x03A9;</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>n</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, generalizing their result to qudits of any prime dimension. Our proof techniques use explicitly tools from higher-order Fourier analysis. We believe this example motivates the further exploration of applications of higher-order Fourier analysis in quantum information theory.

Locations

  • Quantum - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Stabilizer rank and higher-order Fourier analysis 2021 Farrokh Labib
+ PDF Chat New techniques for bounding stabilizer rank 2022 Benjamin Lovitz
Vincent Steffan
+ Montréal notes on quadratic Fourier analysis 2007 Ben Green
+ PDF Chat Improved bounds for testing low stabilizer complexity states 2024 Saeed Mehraban
Mehrdad Tahmasbi
+ Counting stabiliser codes for arbitrary dimension 2022 Tanmay Singal
Che Chiang
Eugene Hsu
Eunsang Kim
Hsi‐Sheng Goan
Min-Hsiu Hsieh
+ PDF Chat Lower Bounds on Stabilizer Rank 2022 Shir Peleg
Amir Shpilka
Ben Lee Volk
+ Lower Bounds on Stabilizer Rank 2021 Shir Peleg
Amir Shpilka
Ben Lee Volk
+ Quantum algorithms, symmetry, and Fourier analysis 2012 Aaron Denney
+ Lower Bounds on Stabilizer Rank. 2021 Shir Peleg
Amir Shpilka
Ben Lee Volk
+ Fourier theory and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:math>-algebras 2016 Erik Bédos
Roberto Conti
+ The complexity of computing (almost) orthogonal matrices with ε-copies of the Fourier transform 2020 Nir Ailon
Gal Yehuda
+ PDF Chat Quantum Fourier analysis 2020 Arthur Jaffe
Chunlan Jiang
Zhengwei Liu
Yunxiang Ren
Jinsong Wu
+ The rank theorem on matrices of theta functions : Dedicated to Professor Y. Kawada on his 60th birthday 1977 Shoji Koizumi
+ PDF Chat Fourier 1-norm and quantum speed-up 2019 Sebastián Alberto Grillo
Franklin de Lima Marquezino
+ PDF Chat Simulation of quantum circuits by low-rank stabilizer decompositions 2019 Sergey Bravyi
Dan E. Browne
Padraic Calpin
Earl T. Campbell
David Gosset
Mark Howard
+ PDF Chat On the geometry of stabilizer states 2014 Héctor J. García
Igor L. Markov
Andrew W. Cross
+ PDF Chat Counting stabiliser codes for arbitrary dimension 2023 Tanmay Singal
Che Chiang
Eugene Hsu
Eunsang Kim
Hsi‐Sheng Goan
Min-Hsiu Hsieh
+ σø-Astic Matrices 1979 R. A. Cuninghame‐Green
+ Bases for optimising stabiliser decompositions of quantum states 2023 Nadish de Silva
Ming Yin
Sergii Strelchuk
+ PDF Chat Nonstabilizerness determining the hardness of direct fidelity estimation 2023 Lorenzo Leone
Salvatore F. E. Oliviero
Alioscia Hamma