The complexity of orientable graph manifolds

Type: Article

Publication Date: 2022-01-01

Citations: 0

DOI: https://doi.org/10.1515/advgeom-2021-0040

Abstract

Abstract We give an upper bound for the Matveev complexity of the whole class of closed connected orientable prime graph manifolds; this bound is sharp for all 14502 graph manifolds of the Recogniser catalogue (available at http://matlas.math.csu.ru/?page=search)

Locations

  • arXiv (Cornell University) - View - PDF
  • Archivio istituzionale della ricerca (Alma Mater Studiorum Università di Bologna) - View - PDF
  • Advances in Geometry - View

Similar Works

Action Title Year Authors
+ The complexity of orientable graph manifolds 2019 Alessia Cattabriga
Michele Mulazzani
+ The complexity of orientable graph manifolds 2019 Alessia Cattabriga
Michele Mulazzani
+ Complexity of 3-manifolds 2004 Bruno Martelli
+ Complexity of 3-manifolds 2004 Bruno Martelli
+ Complexity of 3-manifolds 2006 Bruno Martelli
+ Computing Matveev's complexity of non-orientable 3-manifolds via crystallization theory 2004 María Rita Casali
+ Обобщение многообразия Эверита. Диаграммы Хегора. Сложность 2011 Козловская Татьяна Анатольевна
+ Computing Matveev's complexity via crystallization theory: the orientable case 2004 María Rita Casali
Paola Cristofori
+ Manifolds with small topological complexity 2020 Petar Pavešić
+ PDF Chat Manifolds with small topological complexity 2024 Petar Pavešić
+ PDF Chat Compact 3-manifolds via 4-colored graphs 2015 Paola Cristofori
Michele Mulazzani
+ 3-Manifolds with complexity at most 9 2000 Bruno Martelli
Carlo Petronio
+ PDF Chat Hyperbolic manifolds containing high topological index surfaces 2018 Marion Campisi
Matt Rathbun
+ Complexity of 4-Manifolds 2006 Francesco Costantino
+ Complexity, Heegaard diagrams and generalized Dunwoody manifolds 2009 Alessia Cattabriga
Michele Mulazzani
Andreĭ Vesnin
+ PDF Chat COMPLEXITY, HEEGAARD DIAGRAMS AND GENERALIZED DUNWOODY MANIFOLDS 2010 Alessia Cattabriga
Michele Mulazzani
Andreĭ Vesnin
+ Complexity computation for compact 3-manifolds via crystallizations and Heegaard diagrams 2012 María Rita Casali
Paola Cristofori
Michele Mulazzani
+ PDF Chat Minimal 4-colored graphs representing an infinite family of hyperbolic 3-manifolds 2017 Paola Cristofori
Evgeny Fominykh
Michele Mulazzani
Vladimir Tarkaev
+ Finiteness of mapping degrees and ${\rm PSL}(2,{\R})$-volume on graph manifolds 2008 Pierre Derbez
Shicheng Wang
+ PDF Chat Three-Manifolds Having Complexity At Most 9 2001 Bruno Martelli
Carlo Petronio

Works That Cite This (0)

Action Title Year Authors