Approximation properties of the new type generalized Bernstein-Kantorovich operators

Type: Article

Publication Date: 2021-12-10

Citations: 0

DOI: https://doi.org/10.3934/math.2022212

Locations

  • AIMS Mathematics - View
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ Construction of a new family of Bernstein‐Kantorovich operators 2017 S. A. Mohiuddine
Tuncer Acar
Abdullah Alotaibi
+ PDF Chat GENERALIZED BERNSTEIN-KANTOROVICH OPERATORS OF BLENDING TYPE 2019 Arun Kajla
+ PDF Chat On approximation properties of generalized q-Bernstein-Kantorovich operators 2019 Lakshmi Narayan Mishra
Dhawal J. Bhatt
+ PDF Chat A NEW KIND OF THE VARIANT OF THE MODIFIED BERNSTEIN-KANTOROVICH OPERATORS DEFINED BY ¨OZARSLAN AND DUMAN 2021 Abhishek Kumar
+ Parametric generalization of the modified Bernstein-Kantorovich operators 2023 Kadir Kanat
Melek Sofyalıoğlu
Selin Erdal
+ PDF Chat A numerical comparative study of generalized Bernstein-Kantorovich operators 2021 Uğur Kadak
Faruk Özger
+ PDF Chat Approximation properties of Bernstein-Kantorovich type operators of two variables 2019 Döne Karahan
Aydın İZGİ
+ PDF Chat Approximation using a modified type of Bernstein operators 2022 Mustafa K. Shehab
+ Generalized Bernstein‐Kantorovich–type operators on a triangle 2019 Arun Kajla
+ Some approximation results by Bernstein-Kantorovich operators based on (p,q)-integers 2015 M. Mursaleen
Khursheed J‎. ‎Ansari
Asif Khan
+ Approximation by a Kantorovich type q-Bernstein-Stancu operators 2015 M. Mursaleen
Khursheed J‎. ‎Ansari
Asif Khan
+ Some approximation results for the new modification of Bernstein-Beta operators 2021 Qing‐Bo Cai
Melek Sofyalıoğlu
Kadir Kanat
Bayram Çekım
+ PDF Chat A new variant of the modified Bernstein-Kantorovich operators defined by Özarslan and Duman 2023 Abhishek Kumar
+ PDF Chat The family of $ \lambda $-Bernstein-Durrmeyer operators based on certain parameters 2022 Ram Pratap
+ Theoretical Validation and Comparative Analysis of Higher Order Modified Bernstein Operators 2024 Mahima Tomar
Naokant Deo
+ PDF Chat Approximation properties of modified Kantorovich type (p,q)-Bernstein operators 2021 Kan Yu
Wen-Tao Cheng
Lig ng Fan
Xiaol ng Zhou
+ A new kind of λ-Bernstein operators with better approximation 2024 Shagufta Rahman
+ Q-Analogue of Generalized Bernstein–Kantorovich Operators 2020 Ram Pratap
Naokant Deo
+ PDF Chat Approximation by α-Bernstein-Schurer operator 2021 Nursel Çetіn
+ ψ$$ \psi $$‐Bernstein–Kantorovich operators 2024 Hüseyin Aktuğlu
Mustafa Kara
Erdem Baytunç

Works That Cite This (0)

Action Title Year Authors