Chapter 2 Evolution Operators

Type: Book-Chapter

Publication Date: 1978-01-01

Citations: 0

DOI: https://doi.org/10.1016/s0168-2024(08)70196-6

Locations

  • Studies in mathematics and its applications - View

Similar Works

Action Title Year Authors
+ Evolution operators of parabolic equations in continuous function space 1987 Asami Yagi
+ Homogenization of non-autonomous evolution problems for convolution type operators in randomly evolving media 2025 A. Piatnitski
Е. Г. Жижина
+ On a class of nonlocal parabolic equations 2011 A. N. Bogolyubov
М. Д. Малых
+ Задачи оптимального и жесткого управления решениями специального вида нестационарных уравнений соболевского типа 2014 Сагадеева Минзиля Алмасовна
Шулепов Андрей Николаевич
+ PDF Chat Задачи оптимального и жесткого управления решениями специального вида нестационарных уравнений соболевского типа 2014 M.A. Sagadeeva
Andrey N Shulepov
+ PDF Chat Infinite-dimensional elliptic operators and parabolic equations connected with them 1967 Yu. L. Daletskiǐ
+ On a nonlocal problem for nonlinear parabolic equation 2014 Ж.О. Тахиров
R. N. Turaev
+ Cauchy Problems and Evolution Operators 1995 Herbert Amann
+ Nonlocal evolution equations with p[u(x, t)]-Laplacian and lower-order terms 2020 S. N. Antont︠s︡ev
Sergey Shmarev
+ PDF Chat On a nonlocal problem for parabolic type equations 2019 O. V. Martynyuk
V. Gorodetskiy
R. Kolisnyk
+ PDF Chat Quasilinear Parabolic Evolution Equations 2016 Jan Prüß
Gieri Simonett
+ Linear and Quasi-linear Evolution Equations in Hilbert Spaces 2012 Pascal Cherrier
Albert Milani
+ Advances in the study of local and nonlocal partial differential equations 2018 Alexis Molino
+ Nonlocal 𝑝-Laplacian evolution problems 2010 Fuensanta Andreu-Vaillo
José M. Mazón
Julio D. Rossi
J. Julián Toledo-Melero
+ On a class of nonlocal evolution equations with the p[∇u]-Laplace operator 2021 S. N. Antont︠s︡ev
И. В. Кузнецов
Sergey Shmarev
+ Homogenization of non-autonomous operators of convolution type in periodic media 2023 Andrey Piatnitski
Е. Г. Жижина
+ PDF Chat On a class of nonlocal evolution equations with the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si8.svg"><mml:mrow><mml:mi>p</mml:mi><mml:mrow><mml:mo>[</mml:mo><mml:mi>u</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:math>-Laplace operator 2020 S. N. Antont︠s︡ev
Sergey Shmarev
+ PDF Chat NONCLASSICAL EQUATIONS OF MATHEMATICAL PHYSICS. LINEAR SOBOLEV TYPE EQUATIONS OF HIGHER ORDER 2016 A.A. Zamyshlyaeva
G. A. Sviridyuk
+ Nonlocal parabolic equation with conserved spatial integral 2015 Xiao-Liu Wang
Fang-Zheng Tian
Gen Li
+ FUNCTIONAL INTEGRALS CONNECTED WITH OPERATOR EVOLUTION EQUATIONS 1962 Yu. L. Daletskiǐ

Works That Cite This (0)

Action Title Year Authors