Type: Article
Publication Date: 2016-05-16
Citations: 0
DOI: https://doi.org/10.1017/nmj.2016.13
In this paper a new geometric characterization of the $n$ th symmetric product of a curve is given. Specifically, we assume that there exists a chain of smooth subvarieties $V_{i}$ of dimension $i$ , such that $V_{i}$ is an ample divisor in $V_{i+1}$ and its intersection product with $V_{1}$ is one; that the Albanese dimension of $V_{2}$ is $2$ and the genus of $V_{1}$ is equal to the irregularity of the variety. We prove that in this case the variety is isomorphic to the symmetric product of a curve.
Action | Title | Year | Authors |
---|---|---|---|
+ | Preliminaries | 1985 |
E. Arbarello M. Cornalba P. A. Griffiths J. Harris |
+ PDF Chat | None | 1995 |
Sheila Sundaram |
+ | Introduction | 2019 |
Andrei Agrachev Davide Barilari Ugo Boscain |
+ | Introduction | 2015 |
Thomas E. Cecil Patrick J. Ryan |
+ PDF Chat | None | 2024 | |
+ | Introduction | 1988 |
J. H. van Lint Gerard van der Geer |
+ | None | 2001 |
Bjorn Poonen |
+ | Introduction | 2017 |
Claire Voisin |
+ | Algebra | 2020 |
Greg Friedman |
+ | Introduction | 2015 |
V. Lakshmibai Justin Brown |
+ | Introduction | 2013 |
Jędrzej Śniatycki |
+ PDF Chat | None | 1997 |
Annette Werner |
+ | Preface | 2015 |
Christopher D. Hacon Mircea Mustaţă Mihnea Popa |
+ | Introduction | 1994 |
Wilfred Hulsbergen |
+ PDF Chat | None | 2020 |
Matthew Kwan Lisa Sauermann |
+ | Preliminaries | 2019 |
Sang-Hyun Kim Thomas Koberda Mahan Mj |
+ PDF Chat | None | 2002 |
Peter Vermeire |
+ | Introduction | 1992 |
Wilfred W. J. Hulsbergen |
+ | Examples | 2022 |
András Némethi |
+ | None | 2000 |
Costa |
Action | Title | Year | Authors |
---|