Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. II

Type: Article

Publication Date: 1974-09-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-1974-99954-0

Abstract

We provide a simple proof (and mild improvement) of Schnol’s result that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L squared"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> eigenfunctions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="negative normal upper Delta plus upper V"> <mml:semantics> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi mathvariant="normal">Δ</mml:mi> <mml:mo>+</mml:mo> <mml:mi>V</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">- \Delta + V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O left-parenthesis exp left-parenthesis minus a r right-parenthesis right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>exp</mml:mi> <mml:mo>⁡</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mo>−</mml:mo> <mml:mi>a</mml:mi> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">O(\exp ( - ar))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for any <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a greater-than 0"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">a &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whenever <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">V \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy="false">→</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">r \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Pointwise bounds on eigenfunctions and wave packets in 𝑁-body quantum systems. III 1975 Barry Simon
+ Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems IV 1978 Percy Deift
Walter Hunziker
Barry Simon
E. Vock
+ Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems 1981 René Carmona
Barry Simon
+ PDF Chat Pointwise bounds on eigenfunctions and wave packets in $N$-body quantum systems. I 1974 Barry Simon
+ Pointwise bounds for Schr�dinger eigenstates 1978 Ren� Carmona
+ Energy bounds on point-wise damped wave operators 2006 Sean Hardesty
+ PDF Chat 𝑁-body Schrödinger operators with finitely many bound states 1990 W. D. Evans
Roger T. Lewis
+ Refined bounds for the eigenvalues of the Klein-Gordon operator 2013 Türkay Yolcu
+ Localization of quantum states and landscape functions 2016 Stefan Steinerberger
+ PDF Chat Analysis with weak trace ideals and the number of bound states of Schrödinger operators 1976 Barry Simon
+ Eigenvalue bounds for Schrödinger operators with complex potentials. III 2016 Rupert L. Frank
+ PDF Chat Weak spectral theory 1985 M. W. Wong
+ Eigenfunction Expansions* 1992 Daniel Zwillinger
+ PDF Chat On zero-diagonal operators and traces 1987 Peng Fan
Che Kao Fong
Domingo A. Herrero
+ On iterative solutions for quantum-mechanical bound states 1966 Peter Robinson
+ On wave functions in quantum mechanics. I 1978 A. Bressan
+ Localizations of Eigenfunctions 2017 Svitlana Mayboroda
+ Pointwise bounds for eigenfunctions of one-electron systems 1971 Hans R. Fankhauser
+ PDF Chat The 𝐿²-norm of Maass wave functions 1981 Robert A. Smith
+ Self-adjointness of the perturbed wave operator on 𝐿²(𝑅ⁿ),𝑛≥2 2004 Mohammed Hichem Mortad