Deterministic Budget-Feasible Clock Auctions

Type: Book-Chapter
Publication Date: 2022-01-01
Citations: 6
DOI: https://doi.org/10.1137/1.9781611977073.114

Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Deterministic Budget-Feasible Clock AuctionsEric Balkanski, Pranav Garimidi, Vasilis Gkatzelis, Daniel Schoepflin, and Xizhi TanEric Balkanski, Pranav Garimidi, Vasilis Gkatzelis, Daniel Schoepflin, and Xizhi Tanpp.2940 - 2963Chapter DOI:https://doi.org/10.1137/1.9781611977073.114PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller's true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed the buyer's budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of very appealing properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer's valuation function is submodular over the set of services. In addition to this, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior work. Previous chapter Next chapter RelatedDetails Published:2022eISBN:978-1-61197-707-3 https://doi.org/10.1137/1.9781611977073Book Series Name:ProceedingsBook Code:PRDA22Book Pages:xvii + 3771

Locations

  • arXiv (Cornell University)
  • Society for Industrial and Applied Mathematics eBooks

Ask a Question About This Paper

Summary

Login to see paper summary

We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the … We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller's true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer's valuation function is submodular over the set of services. In addition, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior work.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.
In a single-parameter mechanism design problem, a provider is looking to sell a service to a group of potential buyers. Each buyer $i$ has a private value $v_i$ for receiving … In a single-parameter mechanism design problem, a provider is looking to sell a service to a group of potential buyers. Each buyer $i$ has a private value $v_i$ for receiving the service and a feasibility constraint restricts which sets of buyers can be served simultaneously. Recent work in economics introduced clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and strong incentive guarantees. Subsequent work focused on evaluating the social welfare approximation guarantees of these auctions, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets. We show that these negative results can be circumvented by using prior information or by leveraging randomization. We provide clock auctions that give a $O(\log\log k)$ approximation for general downward-closed feasibility constraints with $k$ maximal feasible sets for three different information models, ranging from full access to the value distributions to complete absence of information. The more information the seller has, the simpler these auctions are. Under full access, we use a particularly simple deterministic clock auction, called a single-price clock auction, which is only slightly more complex than posted price mechanisms. In this auction, each buyer is offered a single price and a feasible set is selected among those who accept their offers. In the other extreme, where no prior information is available, this approximation guarantee is obtained using a complex randomized clock auction. In addition to our main results, we propose a parameterization that interpolates between single-price clock auctions and general clock auctions, paving the way for an exciting line of future research.
We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would … We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a $\frac{2e}{e-1}$-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.
We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would … We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a $\frac{2e}{e-1}$-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.
Budget-feasible procurement has been a major paradigm in mechanism design since its introduction by Singer (2010). An auctioneer (buyer) with a strict budget constraint is interested in buying goods or … Budget-feasible procurement has been a major paradigm in mechanism design since its introduction by Singer (2010). An auctioneer (buyer) with a strict budget constraint is interested in buying goods or services from a group of strategic agents (sellers). In many scenarios it makes sense to allow the auctioneer to only partially buy what an agent offers, e.g., an agent might have multiple copies of an item to sell, they might offer multiple levels of a service, or they may be available to perform a task for any fraction of a specified time interval. Nevertheless, the focus of the related literature has been on settings where each agent's services are either fully acquired or not at all. The main reason for this, is that in settings with partial allocations like the ones mentioned, there are strong inapproximability results. Under the mild assumption of being able to afford each agent entirely, we are able to circumvent such results in this work. We design a polynomial-time, deterministic, truthful, budget-feasible $(2+\sqrt{3})$-approximation mechanism for the setting where each agent offers multiple levels of service and the auctioneer has a discrete separable concave valuation function. We then use this result to design a deterministic, truthful and budget-feasible mechanism for the setting where any fraction of a service can be acquired and the auctioneer's valuation function is separable concave (i.e., the sum of concave functions). The approximation ratio of this mechanism depends on how `nice' the concave functions are, and is $O(1)$ for valuation functions that are sums of $O(1)$-regular functions (e.g., functions like $\log(1+x)$). For the special case of a linear valuation function, we improve the best known approximation ratio for the problem from $1+\phi$ (by Klumper & Sch\"afer (2022)) to $2$. This establishes a separation between this setting and its indivisible counterpart.
We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, … We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of submodular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the submodular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions.
We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, … We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of submodular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the submodular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions.
The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of … The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and $O(1)$-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only $O(1)$-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain $O(p)$-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a $p$-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.
Previous chapter Next chapter Full AccessProceedings Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)On the Approximability of Budget Feasible MechanismsNing Chen, Nick Gravin, and Pinyan LuNing Chen, … Previous chapter Next chapter Full AccessProceedings Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)On the Approximability of Budget Feasible MechanismsNing Chen, Nick Gravin, and Pinyan LuNing Chen, Nick Gravin, and Pinyan Lupp.685 - 699Chapter DOI:https://doi.org/10.1137/1.9781611973082.54PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for monotone submodular functions: We give a randomized mechanism with an approximation ratio of 7.91 (improving on the previous best-known result 233.83), and a deterministic mechanism with an approximation ratio of 8.34. We also study the knapsack problem, which is a special submodular function, give a 2 + √2 approximation deterministic mechanism (improving on the previous best-known result 5), and a 3 approximation randomized mechanism. We provide similar results for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group. Finally we show a lower bound of 1 + √2 for the approximation ratio of deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general monotone submodular functions. Our lower bounds are unconditional, and do not rely on any computational or complexity assumptions. Previous chapter Next chapter RelatedDetails Published:2011ISBN:978-0-89871-993-2eISBN:978-1-61197-308-2 https://doi.org/10.1137/1.9781611973082Book Series Name:ProceedingsBook Code:PR138Book Pages:xviii-1788
We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a … We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results.
We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a … We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results.
We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs. The quality of services is measured by a submodular function known to the … We study procurement auctions, where an auctioneer seeks to acquire services from strategic sellers with private costs. The quality of services is measured by a submodular function known to the auctioneer. Our goal is to design computationally efficient procurement auctions that (approximately) maximize the difference between the quality of the acquired services and the total cost of the sellers, while ensuring incentive compatibility (IC), individual rationality (IR) for sellers, and non-negative surplus (NAS) for the auctioneer. Our contributions are twofold: (i) we provide an improved analysis of existing algorithms for non-positive submodular function maximization, and (ii) we design efficient frameworks that transform submodular optimization algorithms into mechanisms that are IC, IR, NAS, and approximation-preserving. These frameworks apply to both the offline setting, where all sellers' bids and services are available simultaneously, and the online setting, where sellers arrive in an adversarial order, requiring the auctioneer to make irrevocable decisions. We also explore whether state-of-the-art submodular optimization algorithms can be converted into descending auctions in adversarial settings, where the schedule of descending prices is determined by an adversary. We show that a submodular optimization algorithm satisfying bi-criteria $(1/2, 1)$-approximation in welfare can be effectively adapted to a descending auction. Additionally, we establish a connection between descending auctions and online submodular optimization. Finally, we demonstrate the practical applications of our frameworks by instantiating them with state-of-the-art submodular optimization algorithms and empirically comparing their welfare performance on publicly available datasets with thousands of sellers.
One of the main challenges in mechanism design is to carefully engineer incentives ensuring truthfulness while maintaining strong social welfare approximation guarantees. But these objectives are often in conflict, making … One of the main challenges in mechanism design is to carefully engineer incentives ensuring truthfulness while maintaining strong social welfare approximation guarantees. But these objectives are often in conflict, making it impossible to design effective mechanisms. An important class of mechanism design problems that belong to this category are budget-feasible mechanisms. Here, the designer needs to procure services of maximum value from a set of agents while being on a budget, i.e., having a limited budget to enforce truthfulness. However, as empirical studies suggest, factors like limited information and bounded rationality question the idealized assumption that the agents behave perfectly rationally. Motivated by this, Troyan and Morill in 2022 introduced non-obvious manipulability (NOM) as a more lenient incentive compatibility notion. In this paper, we investigate whether resorting to NOM enables us to derive improved mechanisms in budget-feasible domains. We establish a tight bound of 2 on the approximation guarantee of budget-feasible mechanisms satisfying NOM for the general class of monotone subadditive valuation functions. Our result thus establishes a clear separation between the achievable guarantees for DSIC (perfectly rational agents) and NOM (imperfectly rational agents) as no truthful mechanism can achieve a guarantee better than 2.41. Along the way, we fully characterize BNOM and WNOM (which together form NOM) and derive matching upper and lower bounds, respectively. Conceptually, our characterization results suggest "Golden Tickets" and "Wooden Spoons" as natural means to realize BNOM and WNOM, respectively. Additionally, we show that randomized budget-feasible mechanisms satisfying BNOM can achieve an expected approximation ratio arbitrarily close to 1.
The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of … The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible, and O(1)-approximation mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). The fact that in our mechanism the agents are not ordered according to their marginal value per cost allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present, for example, at most k agents can be selected. We obtain O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about nontrivial approximation guarantees in polynomial time, our results are, asymptotically, the best possible.
We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, … We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of sub modular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the sub modular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions.
Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget … Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for monotone submodular functions: We give a randomized mechanism with an approximation ratio of 7.91 (improving on the previous best-known result 233.83), and a deterministic mechanism with an approximation ratio of 8.34. We also study the knapsack problem, which is a special submodular function, give a 2 + √2 approximation deterministic mechanism (improving on the previous best-known result 5), and a 3 approximation randomized mechanism. We provide similar results for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group.Finally we show a lower bound of 1 + √2 for the approximation ratio of deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general monotone submodular functions. Our lower bounds are unconditional, and do not rely on any computational or complexity assumptions.
We consider an outsourcing problem where a software agent procures multiple services from providers with uncertain reliabilities to complete a computational task before a strict deadline. The service consumer requires … We consider an outsourcing problem where a software agent procures multiple services from providers with uncertain reliabilities to complete a computational task before a strict deadline. The service consumer requires a procurement strategy that achieves the optimal balance between success probability and invocation cost. However, the service providers are self-interested and may misrepresent their private cost information if it benefits them. For such settings, we design a novel procurement auction that provides the consumer with the highest possible revenue, while giving sufficient incentives to providers to tell the truth about their costs. This auction creates a contingent plan for gradual service procurement that suggests recruiting a new provider only when the success probability of the already hired providers drops below a time-dependent threshold. To make this auction incentive compatible, we propose a novel weighted threshold payment scheme which pays the minimum among all truthful mechanisms. Using the weighted payment scheme, we also design a low-complexity near-optimal auction that reduces the computational complexity of the optimal mechanism by 99% with only marginal performance loss (less than 1%). We demonstrate the effectiveness and strength of our proposed auctions through both game theoretical and numerical analysis. The experiment results confirm that the proposed auctions exhibit 59% improvement in performance over the current state-of-the-art, by increasing success probability up to 79% and reducing invocation cost by up to 11%.
We consider an outsourcing problem where a software agent procures multiple services from providers with uncertain reliabilities to complete a computational task before a strict deadline. The service consumer requires … We consider an outsourcing problem where a software agent procures multiple services from providers with uncertain reliabilities to complete a computational task before a strict deadline. The service consumer requires a procurement strategy that achieves the optimal balance between success probability and invocation cost. However, the service providers are self-interested and may misrepresent their private cost information if it benefits them. For such settings, we design a novel procurement auction that provides the consumer with the highest possible revenue, while giving sufficient incentives to providers to tell the truth about their costs. This auction creates a contingent plan for gradual service procurement that suggests recruiting a new provider only when the success probability of the already hired providers drops below a time-dependent threshold. To make this auction incentive compatible, we propose a novel weighted threshold payment scheme which pays the minimum among all truthful mechanisms. Using the weighted payment scheme, we also design a low-complexity near-optimal auction that reduces the computational complexity of the optimal mechanism by 99% with only marginal performance loss (less than 1%). We demonstrate the effectiveness and strength of our proposed auctions through both game theoretical and numerical analysis. The experiment results confirm that the proposed auctions exhibit 59% improvement in performance over the current state-of-the-art, by increasing success probability up to 79% and reducing invocation cost by up to 11%.
Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget … Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for general submodular functions: we give a randomized mechanism with approximation ratio $7.91$ (improving the previous best-known result 112), and a deterministic mechanism with approximation ratio $8.34$. Further we study the knapsack problem, which is special submodular function, give a $2+\sqrt{2}$ approximation deterministic mechanism (improving the previous best-known result 6), and a 3 approximation randomized mechanism. We provide a similar result for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group. Finally we show a lower bound of approximation ratio of $1+\sqrt{2}$ for deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general submodular functions. Our lower bounds are unconditional, which do not rely on any computational or complexity assumptions.
In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving … In a single-parameter mechanism design problem, a provider is looking to sell some service to a group of potential buyers. Each buyer i has a private value vi for receiving this service, and some feasibility constraint restricts which subsets of buyers can be served simultaneously. Recent work in economics introduced (deferred-acceptance) clock auctions as a superior class of auctions for this problem, due to their transparency, simplicity, and very strong incentive guarantees. Subsequent work in computer science focused on evaluating these auctions with respect to their social welfare approximation guarantees, leading to strong impossibility results: in the absence of prior information regarding the buyers' values, no deterministic clock auction can achieve a bounded approximation, even for simple feasibility constraints with only two maximal feasible sets.