The Bott–Borel–Weil Theorem

Type: Book-Chapter

Publication Date: 2021-10-18

Citations: 0

DOI: https://doi.org/10.1007/978-3-030-89660-7_10

Locations

  • Springer monographs in mathematics - View

Similar Works

Action Title Year Authors
+ The Weil Algebra 1999 Victor Guillemin
Shlomo Sternberg
Jochen Brüning
+ Geometric Algebra 2022 John Vince
+ Algebra and number theory 2006 John Talbot
Dominic Welsh
+ Algebras, Quivers and Representations 2013 Aslak Bakke Buan
Idun Reiten
Øyvind Solberg
+ Representation theory of finite-dimensional algebras 1982 M. Auslander
+ Hopf algebra constructions and representation theory 1989 Øyvind Solberg
+ Representation theory of finite dimensional algebras 2022 Christian U. Jensen
Helmut Lenzing
+ Langlands' Functoriality and the Weil Representation 1982 Stephen Rallis
+ The Committee on Arithmetic and Algebra 1902 W. J. G.
+ Representations of Algebras, Geometry and Physics 2021 Kiyoshi Igusa
Alex Martsinkovsky
Gordana Todorov
+ Algebra — Representation Theory 2001 Klaus W. Roggenkamp
Mirela Ştefănescu
+ Representation Theory and Algebraic Geometry 2022 Vladimir Baranovsky
Nicolas Guay
Travis Schedler
+ The Weil Algebra and the Weil Model 2020
+ Algebra and vector geometry 1965 R. G. Stanton
K.D. Fryer
+ A Journey Through Representation Theory: From Finite Groups to Quivers via Algebras 2018 Caroline Gruson
Vera Serganova
+ The representation algebra 2006 Charles F. Dunkl
Donald E. Ramirez
+ The Geometry–Algebra Dictionary 2013 Wolfram Decker
Gerhard Pfister
+ The Basis for Geometric Algebra 2006
+ The Basis for Geometric Algebra 2006
+ Commutative Algebra: Connections with Algebraic Topology and Representation Theory 2008 Alina Iacob

Works That Cite This (0)

Action Title Year Authors